Thin and Scalable Hybrid Emission Filter via Plasma Etching for Low-Invasive Fluorescence Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. CMOS Image Sensor
2.2. Filter Fabrication
- Absorption filter depositionA yellow absorption filter (Valifast yellow 3150, Orient Chemical, Osaka, Japan), cyclopentanone (Wako, Japan), and NOA63 (Norland Product, Jamesburg, NJ, USA) were mixed at a weight ratio of 1:2:1, applied to the interference filter, and then spin-coated at 2000 rpm. Next, for pre-baking, the coated filter was photocured via ultraviolet (UV) irradiation (Omnicure 1000 spot-cure, EXFO, Tokyo, Japan) for 60 s. The subsequent curing step was performed by heating the sample at 100 °C for 15 min and hard-baking at 150 °C for 30 min.
- Image sensor attachmentA CMOS image sensor was attached to the yellow-coated filter using transparent epoxy resin (Z-1, Nissin resin, Tokyo, Japan), where the pixel area was directly in contact with the filter. Subsequently, the assembled materials were heated to 120 °C for 25 min and cured at 25 °C overnight before etching.
- Si-substrate etchingFollowing the reactive ion etching (RIE) machine sample preparation procedure (MUC-21 APS, Sumitomo Precision Product Co., Ltd., Hyogo, Japan), the assembled sample was attached to a micro-cover glass using polyvinyl alcohol (PVA). An additional PVA layer was applied to protect all the sensor sides from being attacked by the SF gas during the etching process. Next, the sample was assembled into a dedicated holder protected by Kapton tape and then inserted into the RIE chamber. Through the application of a continuous flow of SF gas at 130 sccm and a coil radio frequency (RF) generator at 812 W, a Si substrate with a thickness of 600 μm was etched in 90 min. This etching time was optimized to avoid the overexposure of the interference filter in the plasma environment. By raising the gas pressure and input RF power, the etching rate can be increased. However, we avoided overexposure in this investigation. Making the Si substrate thinner by lapping can reduce the etching time.
- Hybrid filter cuttingThe etched filter was cut according to the CMOS sensor size using a 4th harmonic Nd:YAG laser ( = 266 nm). This laser was also used to clean the chip pad area for electrical connectivity with an external circuit.
- Device AssemblyAt this point, the assembly stage (including the printed circuit board (PCB) attachment, electrical wiring, and device protection) was similar to our previous device fabrication stage [31]. Figure 2b shows the final imaging device connected to the external PCB after the assembly stage. The thickness of the filter and bonding layer was approximately 20 μm, which was more than that in our previous work [31].
3. Results
3.1. Surface Filter Characterization
3.2. Filter Transmission Spectrum Profile
3.3. Spatial Resolution Examination
3.4. In Vitro Imaging
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ohta, J.; Tokuda, T.; Sasagawa, K.; Noda, T. Implantable CMOS biomedical devices. Sensors 2009, 9, 9073–9093. [Google Scholar] [CrossRef] [PubMed]
- Ohta, J.; Ohta, Y.; Takehara, H.; Noda, T.; Sasagawa, K.; Tokuda, T.; Haruta, M.; Kobayashi, T.; Akay, Y.M.; Akay, M. Implantable microimaging device for observing brain activities of rodents. Proc. IEEE 2016, 105, 158–166. [Google Scholar] [CrossRef]
- Haruta, M.; Kitsumoto, C.; Sunaga, Y.; Takehara, H.; Noda, T.; Sasagawa, K.; Tokuda, T.; Ohta, J. An implantable CMOS device for blood-flow imaging during experiments on freely moving rats. Jpn. J. Appl. Phys. 2014, 53, 04EL05. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Takehara, H.; Sunaga, Y.; Haruta, M.; Motoyama, M.; Ohta, Y.; Noda, T.; Sasagawa, K.; Tokuda, T.; Ohta, J. Implantable self-reset CMOS image sensor and its application to hemodynamic response detection in living mouse brain. Jpn. J. Appl. Phys. 2016, 55, 04EM02. [Google Scholar] [CrossRef]
- Kobayashi, T.; Haruta, M.; Sasagawa, K.; Matsumata, M.; Eizumi, K.; Kitsumoto, C.; Motoyama, M.; Maezawa, Y.; Ohta, Y.; Noda, T.; et al. Optical communication with brain cells by means of an implanted duplex micro-device with optogenetics and Ca2+ fluoroimaging. Sci. Rep. 2016, 6, 21247. [Google Scholar] [CrossRef]
- Haruta, M.; Kurauchi, Y.; Ohsawa, M.; Inami, C.; Tanaka, R.; Sugie, K.; Kimura, A.; Ohta, Y.; Noda, T.; Sasagawa, K.; et al. Chronic brain blood-flow imaging device for a behavioral experiment using mice. Biomed. Opt. Express 2019, 10, 1557–1566. [Google Scholar] [CrossRef]
- Sunaga, Y.; Ohta, Y.; Akay, Y.M.; Ohta, J.; Akay, M. Monitoring neural activities in the VTA in response to nicotine intake using a novel implantable microimaging device. IEEE Access 2020, 8, 68013–68020. [Google Scholar] [CrossRef]
- Rebusi, R., Jr.; Olorocisimo, J.P.; Briones, J.; Ohta, Y.; Haruta, M.; Takehara, H.; Tashiro, H.; Sasagawa, K.; Ohta, J. Simultaneous CMOS-based imaging of calcium signaling of the central amygdala and the dorsal Raphe nucleus during nociception in freely moving mice. Front. Neurosci. 2021, 15, 667708. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, K.K.; Burns, L.D.; Cocker, E.D.; Nimmerjahn, A.; Ziv, Y.; Gamal, A.E.; Schnitzer, M.J. Miniaturized integration of a fluorescence microscope. Nat. Methods 2011, 8, 871–878. [Google Scholar] [CrossRef] [Green Version]
- Cai, D.J.; Aharoni, D.; Shuman, T.; Shobe, J.; Biane, J.; Song, W.; Wei, B.; Veshkini, M.; La-Vu, M.; Lou, J.; et al. A shared neural ensemble links distinct contextual memories encoded close in time. Nature 2016, 534, 115–118. [Google Scholar] [CrossRef] [Green Version]
- Zong, W.; Wu, R.; Li, M.; Hu, Y.; Li, Y.; Li, J.; Rong, H.; Wu, H.; Xu, Y.; Lu, Y.; et al. Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice. Nat. Methods 2017, 14, 713–719. [Google Scholar] [CrossRef] [PubMed]
- Ozcan, A.; McLeod, E. Lensless imaging and sensing. Annu. Rev. Biomed. Eng. 2016, 18, 77–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dandin, M.; Abshire, P.; Smela, E. Optical filtering technologies for integrated fluorescence sensors. Lab A Chip 2007, 7, 955–977. [Google Scholar] [CrossRef] [PubMed]
- Beiderman, M.; Tam, T.; Fish, A.; Jullien, G.A.; Yadid-Pecht, O. A low-light CMOS contact imager with an emission filter for biosensing applications. IEEE Trans. Biomed. Circuits Syst. 2008, 2, 193–203. [Google Scholar] [CrossRef]
- Dattner, Y.; Yadid-Pecht, O. Low light CMOS contact imager with an integrated poly-acrylic emission filter for fluorescence detection. Sensors 2010, 10, 5014–5027. [Google Scholar] [CrossRef] [Green Version]
- Takehara, H.; Ohta, Y.; Motoyama, M.; Haruta, M.; Nagasaki, M.; Takehara, H.; Noda, T.; Sasagawa, K.; Tokuda, T.; Ohta, J. Intravital fluorescence imaging of mouse brain using implantable semiconductor devices and epi-illumination of biological tissue. Biomed. Opt. Express 2015, 6, 1553–1564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takehara, H.; Kazutaka, O.; Haruta, M.; Noda, T.; Sasagawa, K.; Tokuda, T.; Ohta, J. On-chip cell analysis platform: Implementation of contact fluorescence microscopy in microfluidic chips. AIP Adv. 2017, 7, 095213. [Google Scholar] [CrossRef] [Green Version]
- Reichman, J. Handbook of Optical Filters for Fluorescence Microscopy; Chroma Technology Corporation: Bellows Falls, VT, USA, 2000. [Google Scholar]
- Schwartz, D.E.; Gong, P.; Shepard, K.L. Time-resolved Förster-resonance-energy-transfer DNA assay on an active CMOS microarray. Biosens. Bioelectron. 2008, 24, 383–390. [Google Scholar] [CrossRef] [Green Version]
- Ho, D.; Noor, M.O.; Krull, U.J.; Gulak, G.; Genov, R. CMOS spectrally-multiplexed FRET-on-a-Chip for DNA analysis. IEEE Trans. Biomed. Circuits Syst. 2013, 7, 643–654. [Google Scholar] [CrossRef]
- Chediak, J.A.; Luo, Z.; Seo, J.; Cheung, N.; Lee, L.P.; Sands, T.D. Hybrid integration of CdS filters with GaN LEDs for biophotonic chips. In Proceedings of the The Sixteenth Annual International Conference on Micro Electro Mechanical Systems (MEMS-03), Kyoto, Japan, 19–23 January 2003; IEEE: Piscataway, NJ, USA, 2003; pp. 323–326. [Google Scholar]
- Richard, C.; Renaudin, A.; Aimez, V.; Charette, P.G. An integrated hybrid interference and absorption filter for fluorescence detection in lab-on-a-chip devices. Lab A Chip 2009, 9, 1371–1376. [Google Scholar] [CrossRef]
- Sasagawa, K.; Kimura, A.; Haruta, M.; Noda, T.; Tokuda, T.; Ohta, J. Highly sensitive lens-free fluorescence imaging device enabled by a complementary combination of interference and absorption filters. Biomed. Opt. Express 2018, 9, 4329–4344. [Google Scholar] [CrossRef]
- Sasagawa, K.; Ohta, Y.; Kawahara, M.; Haruta, M.; Tokuda, T.; Ohta, J. Wide field-of-view lensless fluorescence imaging device with hybrid bandpass emission filter. AIP Adv. 2019, 9, 035108. [Google Scholar] [CrossRef] [Green Version]
- Hee, W.S.; Sasagawa, K.; Kameyama, A.; Kimura, A.; Haruta, M.; Tokuda, T.; Ohta, J. Lens-free dual-color fluorescent CMOS image sensor for Förster resonance energy transfer imaging. Sens. Mater. 2019, 31, 2579–2594. [Google Scholar]
- Kuo, G.; Liu, F.L.; Grossrubatscher, I.; Ng, R.; Waller, L. On-chip fluorescence microscopy with a random microlens diffuser. Opt. Express 2020, 28, 8384–8399. [Google Scholar] [CrossRef]
- Kulmala, N.; Sasagawa, K.; Treepetchkul, T.; Takehara, H.; Haruta, M.; Tashiro, H.; Ohta, J. Lensless dual-color fluorescence imaging device using hybrid filter. Jpn. J. Appl. Phys. 2022, 61, SC1020. [Google Scholar] [CrossRef]
- Adams, J.K.; Yan, D.; Wu, J.; Boominathan, V.; Gao, S.; Rodriguez, A.V.; Kim, S.; Carns, J.; Richards-Kortum, R.; Kemere, C.; et al. In vivo lensless microscopy via a phase mask generating diffraction patterns with high-contrast contours. Nat. Biomed. Eng. 2022, 6, 617–628. [Google Scholar] [CrossRef] [PubMed]
- Ghobadi, A.; Ghobadi, T.G.U.; Karadas, F.; Ozbay, E. Highly efficient semiconductor-based metasurface for photoelectrochemical water splitting: Broadband light perfect absorption with dimensions smaller than the diffusion length. Plasmonics 2020, 15, 829–839. [Google Scholar] [CrossRef] [Green Version]
- Hong, L.; Li, H.; Yang, H.; Sengupta, K. Nano-plasmonics and electronics co-integration in CMOS enabling a pill-sized multiplexed fluorescence microarray system. Biomed. Opt. Express 2018, 9, 5735–5758. [Google Scholar] [CrossRef] [PubMed]
- Rustami, E.; Sasagawa, K.; Sugie, K.; Ohta, Y.; Haruta, M.; Noda, T.; Tokuda, T.; Ohta, J. Needle-type imager sensor with band-pass composite emission filter and parallel fiber-coupled laser excitation. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 1082–1091. [Google Scholar] [CrossRef]
- Sasagawa, K.; Rustami, E.; Ohta, Y.; Haruta, M.; Takehara, H.; Tashiro, H.; Ohta, J. Image sensor with hybrid emission filter for in vivo fluorescent imaging. Electron. Commun. Jpn. 2021, 104, e12313. [Google Scholar] [CrossRef]
- Rustami, E.; Sasagawa, K.; Pakpuwadon, T.; Ohta, Y.; Takehara, H.; Haruta, M.; Ohta, J. Fabrication of thin composite emission filter for high-performance lens-free fluorescent imager. In Proceedings of the Microfluidics, BioMEMS, and Medical Microsystems XVIII, San Francisco, CA, USA, 1–4 February 2020; Volume 11235, pp. 49–53. [Google Scholar]
- Rai-Choudhury, P. Sulfur Hexafluoride as an Etchant for Silicon. J. Electrochem. Soc. 1971, 118, 266. [Google Scholar] [CrossRef]
- Donnelly, V.M. Reactions of fluorine atoms with silicon, revisited, again. J. Vac. Sci. Technol. A Vac. Surfaces Film. 2017, 35, 05C202. [Google Scholar] [CrossRef] [Green Version]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenbaum, A.; Luo, W.; Su, T.W.; Göröcs, Z.; Xue, L.; Isikman, S.O.; Coskun, A.F.; Mudanyali, O.; Ozcan, A. Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy. Nat. Methods 2012, 9, 889–895. [Google Scholar] [CrossRef] [Green Version]
- Sugie, K.; Sasagawa, K.; Guinto, M.; Haruta, M.; Tokuda, T.; Ohta, J. Implantable CMOS image sensor with incident-angle-selective pixels. Electron. Lett. 2019, 55, 729–731. [Google Scholar] [CrossRef]
- Papageorgiou, E.P.; Boser, B.E.; Anwar, M. Chip-scale angle-selective imager for in vivo microscopic cancer detection. IEEE Trans. Biomed. Circuits Syst. 2020, 14, 91–103. [Google Scholar] [CrossRef]
Technology | 0.35-μm two-poly four-metal standard CMOS |
Operating voltage (V) | 3.3 |
Pixel type | Three-transistor active pixel sensor |
Pixel size (μm) | 7.5 × 7.5 |
Photodiode type | PSub–NWell |
Pixel array | 40 × 400 |
Color filter | None |
Chip dimension (μm) | 500 (W) × 5100 (L) × 150 (H) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rustami, E.; Sasagawa, K.; Sugie, K.; Ohta, Y.; Takehara, H.; Haruta, M.; Tashiro, H.; Ohta, J. Thin and Scalable Hybrid Emission Filter via Plasma Etching for Low-Invasive Fluorescence Detection. Sensors 2023, 23, 3695. https://doi.org/10.3390/s23073695
Rustami E, Sasagawa K, Sugie K, Ohta Y, Takehara H, Haruta M, Tashiro H, Ohta J. Thin and Scalable Hybrid Emission Filter via Plasma Etching for Low-Invasive Fluorescence Detection. Sensors. 2023; 23(7):3695. https://doi.org/10.3390/s23073695
Chicago/Turabian StyleRustami, Erus, Kiyotaka Sasagawa, Kenji Sugie, Yasumi Ohta, Hironari Takehara, Makito Haruta, Hiroyuki Tashiro, and Jun Ohta. 2023. "Thin and Scalable Hybrid Emission Filter via Plasma Etching for Low-Invasive Fluorescence Detection" Sensors 23, no. 7: 3695. https://doi.org/10.3390/s23073695
APA StyleRustami, E., Sasagawa, K., Sugie, K., Ohta, Y., Takehara, H., Haruta, M., Tashiro, H., & Ohta, J. (2023). Thin and Scalable Hybrid Emission Filter via Plasma Etching for Low-Invasive Fluorescence Detection. Sensors, 23(7), 3695. https://doi.org/10.3390/s23073695