Novel Siloxane Derivatives as Membrane Precursors for Lactate Oxidase Immobilization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Objects of Analysis
2.2. Biosensor Preparation
2.3. Electrochemical Measurements
2.4. Control Serum Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Broder, G.; Weil, M.H. Excess lactate: An index of reversibility of shock in human patients. Science 1964, 143, 1457–1459. [Google Scholar] [CrossRef] [PubMed]
- Schuster, H.P. Prognostic value of blood lactate in critically ill patients. Resuscitation 1984, 11, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Hameed, S.M.; Aird, W.C.; Cohn, S.M. Oxygen delivery. Crit. Care Med. 2003, 31, S658–S667. [Google Scholar] [CrossRef]
- Yadigaroğlu, M.; Çömez, V.V.; Gültekin, Y.E.; Ceylan, Y.; Yanık, H.T.; Yadigaroğlu, N.Ö.; Yücel, M.; Güzel, M. Can lactate levels and lactate kinetics predict mortality in patients with COVID-19 with using qCSI scoring system? Am. J. Emerg. Med. 2023, 66, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, I. Blood Lactate. Sports Med. 1986, 3, 10–25. [Google Scholar] [CrossRef] [PubMed]
- Bravo, I.; Revenga-Parra, M.; Pariente, F.; Lorenzo, E. Reagent-less and robust biosensor for direct determination of lactate in food samples. Sensors 2017, 17, 144. [Google Scholar] [CrossRef] [Green Version]
- Mizutani, F.; Sasaki, K.; Shimura, Y. Sequential determination of L-lactate and lactate dehydrogenase with immobilized enzyme electrode. Anal. Chem. 1983, 55, 35–38. [Google Scholar] [CrossRef]
- Mascini, M.; Moscone, D.; Palleschi, G. A lactate electrode with lactate oxidase immobilized on nylon net for blood serum samples in flow systems. Anal. Chim. Acta 1984, 157, 45–51. [Google Scholar] [CrossRef]
- Romero, M.R.; Garay, F.; Baruzzi, A.M. Design and optimization of a lactate amperometric biosensor based on lactate oxidase cross-linked with polymeric matrixes. Sens. Actuator B Chem. 2008, 131, 590–595. [Google Scholar] [CrossRef]
- Yashina, E.I.; Borisova, A.V.; Karyakina, E.E.; Shchegolikhina, O.I.; Vagin, M.Y.; Sakharov, D.A.; Tonevitsky, A.G.; Karyakin, A.A. Sol-Gel Immobilization of Lactate Oxidase from Organic Solvent: Toward the Advanced Lactate Biosensor. Anal. Chem. 2010, 82, 1601–1604. [Google Scholar] [CrossRef]
- Pribil, M.M.; Cortés-Salazar, F.; Andreyev, E.A.; Lesch, A.; Karyakina, E.E.; Voronin, O.G.; Girault, H.H.; Karyakin, A.A. Rapid optimization of a lactate biosensor design using soft probes scanning electrochemical microscopy. J. Electroanal. Chem. 2014, 731, 112–118. [Google Scholar] [CrossRef] [Green Version]
- Garjonyte, R.; Yigzaw, Y.; Meskys, R.; Malinauskas, A.; Gorton, L. Prussian Blueand lactate oxidase-based amperometric biosensor for lactic acid. Sens. Actuator B Chem. 2001, 79, 33–38. [Google Scholar] [CrossRef]
- Gupta, R.; Chaudhury, N.K. Entrapment of biomolecules in sol–gel matrix for applications in biosensors: Problems and future prospects. Biosens. Bioelectron. 2007, 22, 2387–2399. [Google Scholar] [CrossRef] [PubMed]
- Dave, B.C.; Dunn, B.; Valentine, J.S.; Zink, J.I. Sol-gel encapsulation methods for biosensors. Anal. Chem. 1994, 66, 1120A–1127A. [Google Scholar] [CrossRef]
- Lev, O.; Tsionsky, L.; Rabinovich, L.; Glezer, V.; Sampath, S.; Pankratov, I.; Gun, J. Organically modified sol-gel sensors. Anal. Chem. 1995, 67, 22A–30A. [Google Scholar] [CrossRef]
- Flora, K.K.; Brennan, J.D. Effect of Matrix Aging on the Behavior of Human Serum Albumin Entrapped in a Tetraethyl Orthosilicate-Derived Glass. Chem. Mater. 2001, 13, 4170–4179. [Google Scholar] [CrossRef]
- Winter, R.; Hua, D.W.; Song, X.; Mantulin, W.; Jonas, J. Structural and dynamical properties of the sol-gel transition. J. Phys. Chem. 1990, 94, 2706–2713. [Google Scholar] [CrossRef]
- Karpova, E.V.; Shcherbacheva, E.V.; Galushin, A.A.; Vokhmyanina, D.V.; Karyakina, E.E.; Karyakin, A.A. Non-invasive diabetes monitoring through continuous analysis of sweat using flow-through glucose biosensor. Anal. Chem. 2019, 91, 3778–3783. [Google Scholar] [CrossRef]
- Gomes, S.P.; Odložilíková, M.; Almeida, M.G.; Araújo, A.N.; Couto, C.M.; Montenegro, M.C.B. Application of lactate amperometric sol–gel biosensor to sequential injection determination of l-lactate. J. Pharm. Biomed. Anal. 2007, 43, 1376–1381. [Google Scholar] [CrossRef]
- Nikitina, V.N.; Daboss, E.V.; Vokhmyanina, D.V.; Solovyev, I.D.; Andreev, E.A.; Komkova, M.A.; Karyakin, A.A. The widest linear range of glucose test strips based on various mediators and membranes for whole blood analysis. J. Electroanal. Chem. 2023, 117445. [Google Scholar] [CrossRef]
- Bernards, T.N.M.; van Bommel, M.J.; Boonstra, A.H. Hydrolysis-condensation processes of the tetra-alkoxysilanes TPOS, TEOS and TMOS in some alcoholic solvents. J. Non-Cryst. Solids. 1991, 134, 1–13. [Google Scholar] [CrossRef]
- Pundir, C.S.; Narwal, V.; Batra, B. Determination of lactic acid with special emphasis on biosensing methods: A review. Biosens. Bioelectron. 2016, 86, 777–790. [Google Scholar] [CrossRef] [PubMed]
- Batra, B.; Narwal, V.; Pundir, C.S. An amperometric lactate biosensor based on lactate dehydrogenase immobilized onto graphene oxide nanoparticlesmodified pencil graphite electrode. Eng. Life Sci. 2016, 16, 786–794. [Google Scholar] [CrossRef]
- Vokhmyanina, D.; Daboss, E.; Sharapova, O.; Mogilnikova, M.; Karyakin, A. Single Printing Step Prussian Blue Bulk-Modified Transducers for Oxidase-Based Biosensors. Biosensors 2023, 13, 250. [Google Scholar] [CrossRef]
- Karpova, E.V.; Karyakina, E.E.; Karyakin, A.A. Accessing Stability of Oxidase-Based Biosensors via Stabilizing the Advanced H2O2 Transducer. J. Electrochem. Soc. 2017, 164, B3056. [Google Scholar] [CrossRef]
- Vokhmyanina, D.V.; Andreeva, K.D.; Komkova, M.A.; Karyakina, E.E.; Karyakin, A.A. ‘Artificial peroxidase’ nanozyme—Enzyme based lactate biosensor. Talanta 2020, 208, 120393. [Google Scholar] [CrossRef]
Membrane Forming Agent | Sensitivity, A·M−1·cm−2 | LOD, M | Linear Range, µM |
---|---|---|---|
APTES, 1.5 vol% | 0.28 ± 0.03 | 9 × 10−7 | 1–100 |
APTMS, 0.1 vol% | 0.31 ± 0.04 | 5 × 10−5 | 50–500 |
MAPS, 1.0 vol% | 0.5 ± 0.02 | 5 × 10−7 | 1–1000 |
VTMS, 1.0 vol% | 0.26 ± 0.05 | 1 × 10−6 | 5–500 |
VTES, 0.5 vol% | 0.44 ± 0.05 | 9 × 10−7 | 5–100 |
MTES, 2.0 vol% | 0.13 ± 0.08 | 1 × 10−6 | 1–1000 |
ETES, 1.5 vol% | 0.092 ± 0.008 | 1 × 10−6 | 5–1000 |
Sample | Measured Data, mM | Passport Data, mM |
---|---|---|
Normal human serum | 2.1 ± 0.2 | 1.6 ± 0.3 |
Pathological human serum | 3.20 ± 0.03 | 3.2 ± 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vokhmyanina, D.V.; Sharapova, O.E.; Buryanovataya, K.E.; Karyakin, A.A. Novel Siloxane Derivatives as Membrane Precursors for Lactate Oxidase Immobilization. Sensors 2023, 23, 4014. https://doi.org/10.3390/s23084014
Vokhmyanina DV, Sharapova OE, Buryanovataya KE, Karyakin AA. Novel Siloxane Derivatives as Membrane Precursors for Lactate Oxidase Immobilization. Sensors. 2023; 23(8):4014. https://doi.org/10.3390/s23084014
Chicago/Turabian StyleVokhmyanina, Darya V., Olesya E. Sharapova, Ksenia E. Buryanovataya, and Arkady A. Karyakin. 2023. "Novel Siloxane Derivatives as Membrane Precursors for Lactate Oxidase Immobilization" Sensors 23, no. 8: 4014. https://doi.org/10.3390/s23084014
APA StyleVokhmyanina, D. V., Sharapova, O. E., Buryanovataya, K. E., & Karyakin, A. A. (2023). Novel Siloxane Derivatives as Membrane Precursors for Lactate Oxidase Immobilization. Sensors, 23(8), 4014. https://doi.org/10.3390/s23084014