MEMS Shielded Capacitive Pressure and Force Sensors with Excellent Thermal Stability and High Operating Temperature
Abstract
:1. Introduction
- Increase of the usable pressure and temperature range,
- Increase of the long-term stability of the sensor signal,
- Improvement of the media resistance,
- Reduction of the temperature dependence of the sensor signals.
1.1. Optical Strain Gauges
1.2. Piezoelectric Sensors
1.3. Piezoresistive Sensors
1.4. Capacitive Sensors
2. Materials and Methods
2.1. Sensor Design
- A majority of the presented capacitive sensors work with extremely thin membranes on small areas. This leads to low basic capacitances and excludes the use as a force sensor;
- Only capacitive sensors which consist completely of one material show a sufficiently low temperature dependence;
- Pure SiC sensors with a membrane and base body made of SiC show good performance data but are relatively expensive and complex due to the related material and process costs;
- A low-noise readout of the sensors is generally a challenge, as the capacitance changes and base values may be small.
2.2. Fabrication
2.2.1. Gold–Silicon Eutectically Bonded Sensors
2.2.2. Redesign with Aluminum–Silicon and Gold–Silicon Eutectically Bonded Sensors
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hao, X.; Tanaka, S.; Masuda, A.; Nakamura, J.; Sudoh, K.; Maenaka, K.; Takao, H.; Higuchi, K. Application of Silicon on Nothing Structure for Developing a Novel Capacitive Absolute Pressure Sensor. IEEE Sens. J. 2014, 14, 808–815. [Google Scholar] [CrossRef]
- Shang, H.; Tian, B.; Wang, D.; Liu, Y.; Wang, W. Development of All-SiC Absolute Pressure Sensor Based on Sealed Cavity Structure. IEEE Sens. J. 2021, 21, 27308–27314. [Google Scholar] [CrossRef]
- Wu, C.-H.; Zorman, C.A.; Mehregany, M. Fabrication and testing of bulk micromachined silicon carbide piezoresistive pressure sensors for high temperature applications. IEEE Sens. J. 2006, 6, 316–324. [Google Scholar] [CrossRef]
- Mehregany, M.; Zorman, C.A.; Rajan, N.; Wu, C.H. Silicon carbide MEMS for harsh environments. Proc. IEEE 1998, 86, 1594–1609. [Google Scholar] [CrossRef]
- Fricke, S.; Friedberger, A.; Müller, G.; Brode, W.; Seidel, H.; Schmid, U. Electrical Performance of Alumina Thin Films for High-Temperature Pressure Cells with a Metallic Body. IEEE Sens. J. 2010, 10, 918–923. [Google Scholar] [CrossRef]
- Werthschützky, R.; Bock, K.; Dittrich, P.-G.; Ettrich, K.; Fröhlich, T.; Graf, V.; Volker, G.; Frank, H.; Hans-Dieter, H.; Dietrich, H.; et al. Sensor Technologien 2022. Available online: https://www.ama-sensorik.de/fileadmin/Pubikationen/180601-AMA-Studie-online-final.pdf (accessed on 13 February 2023).
- Avnet Abacus. Pressure Sensors: The Design Engineer’s Guide. Available online: https://www.avnet.com/wps/portal/abacus/solutions/technologies/sensors/pressure-sensors (accessed on 10 February 2023).
- Tian, Q.; Xin, G.; Lim, K.-S.; Ee, Y.-J.; Xue, F.; He, Y.; Zhu, J.; Ahmad, H.; Liu, X.; Yang, H. Optical Fiber Sensor With Double Tubes for Accurate Strain and Temperature Measurement Under High Temperature up to 1000 °C. IEEE Sens. J. 2022, 22, 11710–11716. [Google Scholar] [CrossRef]
- Jin, W.; Michie, W.C.; Graham, T.; Maria, K.; Brian, C. Simultaneous measurement of strain and temperature: Error analysis. Opt. Eng. 1997, 36, 598. [Google Scholar] [CrossRef]
- Tosi, D.; Molardi, C.; Sypabekova, M.; Blanc, W. Enhanced Backscattering Optical Fiber Distributed Sensors: Tutorial and Review. IEEE Sens. J. 2021, 21, 12667–12678. [Google Scholar] [CrossRef]
- Brüel, H.; GmbH, K. Wie Funktionieren Optische Dehnungsmessstreifen?: Optische Dehnungsmessstreifen: Alles, Was Sie Wissen Müssen. Available online: https://www.hbm.com/de/6827/artikel-wie-funktionieren-optische-dehnungsmessstreifen (accessed on 13 February 2023).
- Liu, M.; Wu, Y.; Du, C.; Jiang, D.; Wang, Z. FBG-Based Liquid Pressure Sensor for Distributed Measurement with a Single Channel in Liquid Environment. IEEE Sens. J. 2020, 20, 9155–9161. [Google Scholar] [CrossRef]
- Fraden, J. Handbook of Modern Sensors: Physics, Designs, and Applications, 5th ed.; Springer: Cham, Switzerland, 2016; ISBN 978-3-31-919303-8. [Google Scholar]
- Bin, Z.; Cong, L.; Hong-Zhong, H. Topology Optimization of Piezoelectric Force Sensor. In Proceedings of the International Conference on Apperceiving Computing, Chengdu, China, 13–15 December 2008; pp. 132–136. [Google Scholar]
- Tränkler, H.-R.; Reindl, L.M. (Eds.) Sensortechnik: Handbuch für Praxis und Wissenschaft, 2nd ed.; Springer: Berlin, Germany, 2014; ISBN 978-3-642-29942-1. [Google Scholar]
- Yuan, J. Entwicklung Eines Prozesses zur Fertigung Piezoelektrisch Angeregter Cantilever-Sensoren. Master Thesis, TU Braunschweig, Braunschweig, Germany, 2021. [Google Scholar]
- Schmid, U.; Schneider, M. Editorial for the Special Issue on Piezoelectric MEMS. Micromachines 2018, 9, 237. [Google Scholar] [CrossRef]
- Pillai, G.; Li, S.-S. Piezoelectric MEMS Resonators: A Review. IEEE Sens. J. 2021, 21, 12589–12605. [Google Scholar] [CrossRef]
- Metz, B. Design and Selection Criteria of High Temperature Accelerometers. In Proceedings of the 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Cleveland, OH, USA, 28–30 July 2014. [Google Scholar]
- PCB Piezotronics an Amphenol Company. EX611A20 Data Sheet. Available online: https://www.synotech.de/produkte/datenblatt/?h=PCB&m=EX611A20 (accessed on 14 February 2023).
- Shrout, T.; Zhang, S.; Eitel, R.; Stringer, C.; Randall, C. High Performance, High Temperature Perovskite Piezoelectrics. In Proceedings of the 14th IEEE International Symposium, Montréal, QC, Canada, 23–27 August 2004; pp. 126–129. [Google Scholar] [CrossRef]
- Meena, K.V.; Sankar, A.R. Biomedical Catheters with Integrated Miniature Piezoresistive Pressure Sensors: A Review. IEEE Sens. J. 2021, 21, 10241–10290. [Google Scholar] [CrossRef]
- Bao, M. Analysis and Design Principles of MEMS Devices, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2005; ISBN 0444516166. [Google Scholar]
- Kasten, K.; Kordas, N.; Kappert, H.; Mokwa, W. Capacitive pressure sensor with monolithically integrated CMOS readout circuit for high temperature applications. Sens. Actuators A Phys. 2002, 97–98, 83–87. [Google Scholar] [CrossRef]
- Li, C.; Jia, P.; Sun, B.; Hong, Y.; Xue, Y.; Jia, M.; Xiong, J. A Differential Split-Type Pressure Sensor for High-Temperature Applications. IEEE Access 2021, 9, 20641–20647. [Google Scholar] [CrossRef]
- Li, P.; Wang, J.; Li, X. 0.5 mm × 0.5 mm High-Temperature Pressure Sensors Fabricated with IC-Foundry-Compatible Process in (100)/(111) Hybrid SOI Wafers. In Proceedings of the 2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), Orlando, FL, USA, 20–24 June 2021; pp. 1235–1238. [Google Scholar] [CrossRef]
- Fraga, M.A.; Furlan, H.; Wakavaiachi, S.M.; Massi, M. Fabrication and characterization of piezoresistive strain sensors for high temperature applications. In Proceedings of the 2010 IEEE International Conference on Industrial Technology, Viña del Mar, Chile, 14–17 March 2010; pp. 513–516. [Google Scholar] [CrossRef]
- Young, D.J.; Du, J.; Zorman, C.A.; Ko, W.H. High-Temperature Single-Crystal 3C-SiC Capacitive Pressure Sensor. IEEE Sens. J. 2004, 4, 464–470. [Google Scholar] [CrossRef]
- Xu, M.; Han, X.; Zhao, C.; Li, G.; Zeng, Y.; Li, D.; Yan, H.; Feng, Y. Design and Fabrication of a MEMS Capacitance Vacuum Sensor Based on Silicon Buffer Block. J. Microelectromech. Syst. 2020, 29, 1556–1562. [Google Scholar] [CrossRef]
- Hao, X.; Jiang, Y.; Takao, H.; Maenaka, K.; Higuchi, K. An annular mechanical temperature compensation structure for gas-sealed capacitive pressure sensor. Sensors 2012, 12, 8026–8038. [Google Scholar] [CrossRef]
- Liu, G.D.; Gao, C.C.; Zhang, Y.X.; Hao, Y.L. High Temperature Pressure Sensor Using Cu-Sn Wafer Level Bonding. In Proceedings of the 2015 IEEE Sensors, Busan, Republic of Korea, 1–4 November 2015. [Google Scholar] [CrossRef]
- Marsi, N.; Majlis, B.Y.; Mohd-Yasin, F.; Hamzah, A.A. The fabrication of back etching 3C-SiC-on-Si diaphragm employing KOH + IPA in MEMS capacitive pressure sensor. Microsyst. Technol. 2015, 21, 1651–1661. [Google Scholar] [CrossRef]
- Marsi, N.; Majlis, B.Y.; Hamzah, A.A.; Mohd-Yasin, F. High Reliability of MEMS Packaged Capacitive Pressure Sensor Employing 3C-SiC for High Temperature. Energy Procedia 2015, 68, 471–479. [Google Scholar] [CrossRef]
- Li, C.; Mehregany, M. A Silicon Carbide Capacitive Pressure Sensor for High Temperature and Harsh Environment Applications. In Proceedings of the Transducers 2007—2007 International Solid-State Sensors, Actuators and Microsystems Conference, Lyon, France, 10–14 June 2007; pp. 2597–2600. [Google Scholar] [CrossRef]
- Tan, Q.; Li, C.; Xiong, J.; Jia, P.; Zhang, W.; Liu, J.; Xue, C.; Hong, Y.; Ren, Z.; Luo, T. A high temperature capacitive pressure sensor based on alumina ceramic for in situ measurement at 600 °C. Sensors 2014, 14, 2417–2430. [Google Scholar] [CrossRef]
- Schwesinger, N.; Dehne, C.; Adler, F. Lehrbuch Mikrosystemtechnik: Anwendungen, Grundlagen, Materialien und Herstellung von Mikrosystemen; Oldenbourg: München, Germany, 2009; ISBN 978-3-486-57929-1. [Google Scholar]
- Petra, L. Materialwissenschaftliche Aspekte bei der Entwicklung Bleifreier Lotlegierungen. Ph.D. Dissertation, Technische Universitaet Darmstadt, Darmstadt, Germany, 2002. [Google Scholar]
- VAR Verband der Aluminumrecycling-Industrie e.V. Aluminium Gusslegierungen. Available online: https://docplayer.org/10104882-Aluminium-gusslegierungen.html (accessed on 13 February 2023).
- Ghanam, M.; Bilger, T.; Goldschmidtboeing, F.; Woias, P. Full Silicon Capacitive Force Sensors with Low Temperature Drift and High Temperature Range. In Proceedings of the 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), Orlando, FL, USA, 20–24 June 2021; pp. 1190–1193. [Google Scholar] [CrossRef]
- Murray, J.L.; McAlister, A.J. The Al-Si (Aluminum-Silicon) system. Bull. Alloy Phase Diagr. 1984, 5, 74–84. [Google Scholar] [CrossRef]
- Murarka, S.P.; Blech, I.A.; Levinstein, H.J. Thin-film interaction in aluminum and platinum. J. Appl. Phys. 1976, 47, 5175–5181. [Google Scholar] [CrossRef]
- Ren, J.; Ward, M.; Kinnell, P.; Craddock, R.; Wei, X. Plastic Deformation of Micromachined Silicon Diaphragms with a Sealed Cavity at High Temperatures. Sensors 2016, 16, 204. [Google Scholar] [CrossRef] [PubMed]
Sensor Principle | Optical | Piezoelectric | Piezoresistive | Capacitive |
---|---|---|---|---|
Advantages | High accuracy High resolution Insensitive to electromagnetic interference High operating temperature | Ease of integration High operating temperature Wide measuring range High resolution | Low cost Simple signal processing circuit miniaturized Good linearity | High sensitivity High accuracy Low power consumption High shock resistance |
Disadvantages | Temperature sensitive Complex signal processing circuit | Complex electronic interface Only dynamic measurement expensive | High power consumption Sensitive to temperature and mechanical stress | Susceptible to parasitic and stray capacitance Complex fabrication Complex signal processing circuit |
Chip Type | F2 | F3 | F6 | F7 | F8 | F10 |
---|---|---|---|---|---|---|
Chip size (mm2) | 3.8 × 3 | 3.8 × 3 | 2.25 × 1.7 | 2.25 × 1.7 | 6.8 × 6 | 6.8 × 6 |
Diaphragm thickness (µm) | 300 | 300 | 300 | 300 | 300 | 300 |
Capacitance C0 (no load) (pF) | 4.5 | 1.2 | 1.6 | 1.2 | 5.4 | 6.6 |
Max force (N) | 80 | 80 | 200 * | 200 * | 12 | 63 |
Chip Type | F8 Run 1 | F8 Run 2 | F8 Run 2 |
---|---|---|---|
Bonding material | Au-Si | Al-Si | Au-Si |
Chip size (mm2) | 6.8 × 6 | 6.8 × 6 | 6.8 × 6 |
Diaphragm thickness (µm) | 300 | 240 | 200 |
Capacitance C0 approx. (pF) | 5.46 | 9.53 | 9.55 |
Max. force (at 100% capacitance change) (N) | 11 | 10 | 8 |
[8] | [20] | [26] | [27] | [28] | [34] | F8-Type Au-Si | F8-Type Al-Si | |
---|---|---|---|---|---|---|---|---|
Sensor principle | optical | piezoelectric | piezoresistive | piezoresistive | capacitive | capacitive | capacitive | capacitive |
Thermal stability | 15.7 pm/°C | ≤5% | 0.082% FS | 0.0035%/K | high | 0.05%/K | −0.001%/K | 0.006%/K |
Max Temperature | 1000 °C | 650 °C | 200 °C | 250 °C | 400 °C | 574 °C | 350 °C | 500 °C |
Nonlinearity | - | ≤1% | ±0.14% FS | - | 2.1% | 2.4% | 0.008% FS | 0.035% FS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghanam, M.; Goldschmidtboeing, F.; Bilger, T.; Bucherer, A.; Woias, P. MEMS Shielded Capacitive Pressure and Force Sensors with Excellent Thermal Stability and High Operating Temperature. Sensors 2023, 23, 4248. https://doi.org/10.3390/s23094248
Ghanam M, Goldschmidtboeing F, Bilger T, Bucherer A, Woias P. MEMS Shielded Capacitive Pressure and Force Sensors with Excellent Thermal Stability and High Operating Temperature. Sensors. 2023; 23(9):4248. https://doi.org/10.3390/s23094248
Chicago/Turabian StyleGhanam, Muhannad, Frank Goldschmidtboeing, Thomas Bilger, Andreas Bucherer, and Peter Woias. 2023. "MEMS Shielded Capacitive Pressure and Force Sensors with Excellent Thermal Stability and High Operating Temperature" Sensors 23, no. 9: 4248. https://doi.org/10.3390/s23094248
APA StyleGhanam, M., Goldschmidtboeing, F., Bilger, T., Bucherer, A., & Woias, P. (2023). MEMS Shielded Capacitive Pressure and Force Sensors with Excellent Thermal Stability and High Operating Temperature. Sensors, 23(9), 4248. https://doi.org/10.3390/s23094248