Performance of the FreeStyle Libre Flash Glucose Monitoring System during an Oral Glucose Tolerance Test and Exercise in Healthy Adolescents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Study Design
2.3. Anthropometry and Physical Maturity
2.4. Blood Sampling and Analyses
2.5. FGM Accuracy Assessments and Statistical Analyses
3. Results
FGM Accuracy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blaak, E.E.; Antoine, J.M.; Benton, D.; Björck, I.; Bozzetto, L.; Brouns, F.; Diamant, M.; Dye, L.; Hulshof, T.; Holst, J.J.; et al. Impact of postprandial glycaemia on health and prevention of disease. Obes. Rev. 2012, 13, 923–984. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, C.; Miccoli, R.; Trombetta, M.; Giorgino, F.; Frontoni, S.; Faloia, E.; Marchesini, G.; Dolci, M.A.; Cavalot, F.; Cavallo, G.; et al. Elevated 1-hour postload plasma glucose levels identify subjects with normal glucose tolerance but impaired β-cell function, insulin resistance, and worse cardiovascular risk profile: The GENFIEV study. J. Clin. Endocrinol. Metab. 2013, 98, 2100–2105. [Google Scholar] [CrossRef] [PubMed]
- Fiorentino, T.V.; Marini, M.A.; Andreozzi, F.; Arturi, F.; Succurro, E.; Perticone, M.; Sciacqua, A.; Hribal, M.L.; Perticone, F.; Sesti, G. One-hour postload hyperglycemia is a stronger predictor of type 2 diabetes than impaired fasting glucose. J. Clin. Endocrinol. Metab. 2015, 100, 3744–3751. [Google Scholar] [CrossRef] [PubMed]
- Ning, F.; Zhang, L.; Dekker, J.M.; Onat, A.; Stehouwer, C.D.; Yudkin, J.S.; Laatikainen, T.; Tuomilehto, J.; Pyörälä, K.; Qiao, Q.; et al. Development of coronary heart disease and ischemic stroke in relation to fasting and 2-hour plasma glucose levels in the normal range. Cardiovasc. Diabetol. 2012, 11, 76. [Google Scholar] [CrossRef]
- Mainous, A.G.; Tanner, R.J.; Baker, R.; Zayas, C.E.; Harle, C.A. Prevalence of prediabetes in England from 2003 to 2011: Population-based, cross-sectional study. BMJ Open 2014, 4, e005002. [Google Scholar] [CrossRef] [PubMed]
- NHS Digital. National Diabetes Audit, Non-Diabetic Hyperglycaemia, 2020–2021, Diabetes Prevention Programme, Data Release—NDRS. Available online: https://digital.nhs.uk/data-and-information/publications/statistical/national-diabetes-audit/diabetes-prevention-programme-2020-21-underlying-data (accessed on 18 April 2023).
- Fletcher, E.A.; Salmon, J.; McNaughton, S.A.; Orellana, L.; Wadley, G.D.; Bruce, C.; Dempsey, P.C.; Lacy, K.E.; Dunstan, D.W. Effects of breaking up sitting on adolescents’ postprandial glucose after consuming meals varying in energy: A cross-over randomised trial. J. Sci. Med. Sport 2018, 21, 280–285. [Google Scholar] [CrossRef]
- Karnebeek, K.; Rijks, J.M.; Dorenbos, E.; Gerver, W.-J.M.; Plat, J.; Vreugdenhil, A.C.E. Changes in free-living glycemic profiles after 12 months of lifestyle intervention in children with overweight and with obesity. Nutrients 2020, 12, 1228. [Google Scholar] [CrossRef] [PubMed]
- Ghane, N.; Broadney, M.M.; Davis, E.K.; Trenschel, R.W.; Collins, S.M.; Brady, S.M.; Yanovski, J.A. Estimating plasma glucose with the FreeStyle Libre Pro continuous glucose monitor during oral glucose tolerance tests in youth without diabetes. Pediatr. Diabetes 2019, 20, 1072–1079. [Google Scholar] [CrossRef]
- Basu, A.; Dube, S.; Slama, M.; Errazuriz, I.; Amezcua, J.C.; Kudva, Y.C.; Peyser, T.; Carter, R.E.; Cobelli, C.; Basu, R. Time lag of glucose from intravascular to interstitial compartment in humans. Diabetes 2013, 62, 4083–4087. [Google Scholar] [CrossRef]
- Boisseau, N.; Delamarche, P. Metabolic and hormonal responses to exercise in children and adolescents. Sport Med. 2000, 30, 405–422. [Google Scholar] [CrossRef]
- Edge, J.; Acerini, C.; Campbell, F.; Hamilton-Shield, J.; Moudiotis, C.; Rahman, S.; Randell, T.; Smith, A.; Trevelyan, N. An alternative sensor-based method for glucose monitoring in children and young people with diabetes. Arch. Dis. Child. 2017, 102, 543–549. [Google Scholar] [CrossRef] [PubMed]
- Al Hayek, A.A.; Robert, A.A.; Al Dawish, M.A. Acceptability of the Freestyle Libre Flash glucose monitoring system: The experience of young patients with type 1 diabetes. Clin. Med. Insights Endocrinol. Diabetes 2020, 13, 1179551420910122. [Google Scholar] [CrossRef]
- Karakuş, K.E.; Sakarya, S.; Yeşiltepe Mutlu, G.; Berkkan, M.; Muradoğlu, S.; Can, E.; Gökçe, T.; Eviz, E.; Hatun, Ş. Benefits and drawbacks of Continuous Glucose Monitoring (CGM) use in young children with type 1 diabetes: A qualitative study from a country where the CGM is not reimbursed. J. Patient Exp. 2021, 8, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Wood, A.; O’Neal, D.; Furler, J.; Ekinci, E.I. Continuous glucose monitoring: A review of the evidence, opportunities for future use and ongoing challenges. Intern. Med. J. 2018, 48, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Sun, B.; Huang, S.; Zhu, C.; Bian, M. Glycemic variability: Adverse clinical outcomes and how to improve it? Cardiovasc. Diabetol. 2020, 19, 102. [Google Scholar] [CrossRef]
- Alfieri, V.; Myasoedova, V.A.; Vinci, M.C.; Rondinelli, M.; Songia, P.; Massaiu, I.; Cosentino, N.; Moschetta, D.; Valerio, V.; Ciccarelli, M.; et al. The role of glycemic variability in cardiovascular disorders. Int. J. Mol. Sci. 2021, 22, 8393. [Google Scholar] [CrossRef]
- Cao, B.; Wang, R.; Gong, C.; Wu, D.; Su, C.; Chen, J.; Yi, Y.; Liu, M.; Liang, X.; Li, W. An evaluation of the accuracy of a Flash glucose monitoring system in children with diabetes in comparison with venous blood glucose. J. Diabetes Res. 2019, 2019, 4845729. [Google Scholar] [CrossRef]
- Szadkowska, A.; Gawrecki, A.; Michalak, A.; Zozulinska-Ziokiewicz, D.; Fendler, W.; Młynarski, W. Flash glucose measurements in children with type 1 diabetes in real-life settings: To trust or not to trust? Diabetes Technol. Ther. 2018, 20, 17–24. [Google Scholar] [CrossRef]
- Wong, T.H.T.; Wan, J.M.F.; Louie, J.C.Y. Flash glucose monitoring can accurately reflect postprandial glucose changes in healthy adults in nutrition studies. J. Am. Coll. Nutr. 2021, 40, 26–32. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, F.; Wongpipit, W.; Huang, W.Y.J.; Wong, S.H.S. Accuracy of Flash Glucose Monitoring During Postprandial Rest and Different Walking Conditions in Overweight or Obese Young Adults. Front. Physiol. 2021, 12, 732751. [Google Scholar] [CrossRef]
- Clavel, P.; Tiollier, E.; Leduc, C.; Fabre, M.; Lacome, M.; Buchheit, M. Concurrent validity of a continuous glucose monitoring system at rest, during and following a high-intensity interval training session. Int. J. Sports Physiol. Perform. 2021, 17, 627–633. [Google Scholar] [CrossRef] [PubMed]
- Sekido, K.; Sekido, T.; Kaneko, A.; Hosokawa, M.; Sato, A.; Sato, Y.; Yamazaki, M.; Komatsu, M. Careful readings for a flash glucose monitoring system in nondiabetic Japanese subjects: Individual differences and discrepancy in glucose concentrarion after glucose loading [Rapid Communication]. Endocr. J. 2017, 64, 827–832. [Google Scholar] [CrossRef] [PubMed]
- Bailey, T.; Bode, B.W.; Christiansen, M.P.; Klaff, L.J.; Alva, S. The performance and usability of a factory-calibrated flash glucose monitoring system. Diabetes Technol. Ther. 2015, 17, 787–794. [Google Scholar] [CrossRef] [PubMed]
- Stumvoll, M.; Mitrakou, A.; Pimenta, W.; Jenssen, T.; Yki-Järvinen, H.; Van Haeften, T.; Renn, W.; Gerich, J. Use of the oral glucose tolerance test to assess insulin release and insulin sensitivity. Diabetes Care 2000, 23, 295–301. [Google Scholar] [CrossRef]
- Cole, T.; Lobstein, T. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr. Obes. 2012, 7, 284–294. [Google Scholar] [CrossRef]
- McCarthy, H.D.; Jarrett, K.V.; Emmett, P.M.; Rogers, I. Trends in waist circumferences in young British children: A comparative study. Int. J. Obes. 2005, 29, 157–162. [Google Scholar] [CrossRef]
- Tanner, J. Growth at Adolescence; Blackwell Scientific: Oxford, UK, 1962. [Google Scholar]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef]
- Narang, B.J.; Atkinson, G.; Gonzalez, J.T.; Betts, J.A. A tool to explore discrete-time data: The time series response analyser. Int. J. Sport Nutr. Exerc. Metab. 2020, 30, 374–381. [Google Scholar] [CrossRef]
- Danne, T.; Nimri, R.; Battelino, T.; Bergenstal, R.M.; Close, K.L.; DeVries, J.H.; Garg, S.; Heinemann, L.; Hirsch, I.; Amiel, S.A.; et al. International consensus on use of continuous glucose monitoring. Diabetes Care 2017, 40, 1631–1640. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- International Organization of Standardization. ISO 15197:2013—In Vitro Diagnostic Test Systems—Requirements for Blood-Glucose Monitoring Systems for Self-Testing in Managing Diabetes Mellitus. 2013. Available online: https://www.iso.org/standard/54976.html (accessed on 8 February 2022).
- Shashaj, B.; Luciano, R.; Contoli, B.; Morino, G.S.; Spreghini, M.R.; Rustico, C.; Sforza, R.W.; Dallapiccola, B.; Manco, M. Reference ranges of HOMA-IR in normal-weight and obese young Caucasians. Acta Diabetol. 2016, 53, 251–260. [Google Scholar] [CrossRef]
- Ólafsdóttir, A.F.; Attvall, S.; Sandgren, U.; Dahlqvist, S.; Pivodic, A.; Skrtic, S.; Theodorsson, E.; Lind, M. A clinical trial of the accuracy and treatment experience of the Flash glucose monitor FreeStyle Libre in adults with type 1 Diabetes. Diabetes Technol. Ther. 2017, 19, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Aberer, F.; Hajnsek, M.; Rumpler, M.; Zenz, S.; Baumann, P.M.; Elsayed, H.; Puffing, A.; Treiber, G.; Pieber, T.R.; Sourij, H.; et al. Evaluation of subcutaneous glucose monitoring systems under routine environmental conditions in patients with type 1 diabetes. Diabetes Obes. Metab. 2017, 19, 1051–1055. [Google Scholar] [CrossRef] [PubMed]
- Förster, H.; Haslbeck, M.; Mehnert, H. Metabolic studies following the oral ingestion of different doses of glucose. Diabetes 1972, 21, 1102–1108. [Google Scholar] [CrossRef] [PubMed]
- Boscari, F.; Galasso, S.; Acciaroli, G.; Facchinetti, A.; Marescotti, M.C.; Avogaro, A.; Bruttomesso, D. Head-to-head comparison of the accuracy of Abbott FreeStyle Libre and Dexcom G5 mobile. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 425–427. [Google Scholar] [CrossRef] [PubMed]
- Cengiz, E.; Tamborlane, W.V. A tale of two compartments: Interstitial versus blood glucose monitoring. Diabetes Technol. Ther. 2009, 11 (Suppl. 1), S11–S16. [Google Scholar] [CrossRef] [PubMed]
- Schmelzeisen-Redeker, G.; Schoemaker, M.; Kirchsteiger, H.; Freckmann, G.; Heinemann, L.; Del Re, L. Time delay of CGM sensors: Relevance, causes, and countermeasures. J. Diabetes Sci. Technol. 2015, 9, 1006–1015. [Google Scholar] [CrossRef]
- Staal, O.M.; Hansen, H.M.U.; Christiansen, S.C.; Fougner, A.L.; Carlsen, S.M.; Stavdahl, Ø. Differences between flash glucose monitor and fingerprick measurements. Biosensors 2018, 8, 93. [Google Scholar] [CrossRef]
- Babaya, N.; Noso, S.; Hiromine, Y.; Taketomo, Y.; Niwano, F.; Yoshida, S.; Yasutake, S.; Kawabata, Y.; Ikegami, H. Flash glucose monitoring in type 1 diabetes: A comparison with self-monitoring blood glucose. J. Diabetes Investig. 2020, 11, 1222–1229. [Google Scholar] [CrossRef]
- Akintola, A.A.; Noordam, R.; Jansen, S.W.; de Craen, A.J.; Ballieux, B.E.; Cobbaert, C.M.; Mooijaart, S.P.; Pijl, H.; Westendorp, R.G.; van Heemst, D. Accuracy of continuous glucose monitoring measurements in normo-glycemic individuals. PLoS ONE 2015, 10, e0139973. [Google Scholar] [CrossRef]
- Figueira, F.R.; Umpierre, D.; Ribeiro, J.P.; Tetelbom, P.S.; Henn, N.T.; Esteves, J.F.; Schaan, B.D. Accuracy of continuous glucose monitoring system during exercise in type 2 diabetes. Diabetes Res. Clin. Pract. 2012, 98, e36–e39. [Google Scholar] [CrossRef]
- Herrington, S.J.; Gee, D.L.; Dow, S.D.; Monosky, K.A.; Davis, E.; Pritchett, K.L. Comparison of glucose monitoring methods during steady-state exercise in women. Nutrients 2012, 4, 1282–1292. [Google Scholar] [CrossRef] [PubMed]
- King, F.; Ahn, D.; Hsiao, V.; Porco, T.; Klonoff, D.C. A review of blood glucose monitor accuracy. Diabetes Technol. Ther. 2018, 20, 843–856. [Google Scholar] [CrossRef] [PubMed]
- Charleer, S.; Mathieu, C.; Nobels, F.; Gillard, P. Accuracy and precision of flash glucose monitoring sensors inserted into the abdomen and upper thigh compared with the upper arm. Diabetes Obes. Metab. 2018, 20, 1503–1507. [Google Scholar] [CrossRef] [PubMed]
Variable | Mean ± SD | Range |
---|---|---|
Age (y) | 12.8 ± 0.9 | 11.5–14.4 |
Stature (m) | 1.56 ± 0.1 | 1.35–1.75 |
Body mass (kg) | 44.7 ± 7.2 | 30.3–56.9 |
BMI (kg∙m−2) | 18.4 ± 2.1 | 15.4–22.1 |
Body fat (%) | 22.2 ± 4.9 | 12.7–31.5 |
Waist circumference (cm) | 60.3 ± 8.9 | 46.0–72.0 |
Breast development * | 4 (1) | 1–4 |
Genital development * | 2 (1) | 1–3 |
Pubic hair development * | 3 (2) | 1–5 |
HOMA-IR | 1.62 ± 1.01 | 0.44–3.74 |
2 peak (mL∙kg−1∙min−1) ** | 42.3 ± 10.1 | 31.6–58.8 |
[ISFG] (mmol∙L−1) * | [CPG] (mmol∙L−1) * | Mean Difference (95% CI) * | MARD (%) | p-Value | Effect Size | |
---|---|---|---|---|---|---|
Overall OGTT | 5.96 (5.65 to 6.29) | 6.43 (6.09 to 6.78) | −7.3% (−11 to −3%) | 13.4 ± 5.0 | <0.001 | 0.35 |
0 min | 4.52 (4.18 to 4.89) | 4.78 (4.42 to 5.17) | −5.4% (−14 to 4%) | 14.1 ± 6.3 | 0.240 | 0.57 |
15 min | 5.67 (5.24 to 6.13) | 6.83 (6.32 to 7.39) | −17.1% (−24 to −9%) | 17.5 ± 11.2 | <0.001 | 1.21 |
30 min | 7.42 (6.86 to 8.02) | 8.17 (7.56 to 8.84) | −9.2% (−17 to 0%) | 10.6 ± 6.1 | 0.041 | 0.55 |
60 min | 6.76 (6.25 to 7.31) | 6.73 (6.22 to 7.28) | 0.5% (−8 to 10%) | 13.4 ± 7.4 | 0.923 | 0.17 |
120 min | 5.86 (5.42 to 6.34) | 6.12 (5.66 to 6.62) | −4.2% (−13 to 5%) | 11.4 ± 7.5 | 0.365 | 0.29 |
Glucose iAUC | 1.79 (1.47 to 2.20) | 1.89 (1.54 to 2.31) | −4.9% (−19 to 12%) | 22.1 ± 15.1 | 0.529 | 0.14 |
Glucose tAUC | 6.52 ± 1.06 | 6.80 ± 0.64 | −0.28 (−0.61 to 0.04) | 8.5 ± 5.8 | 0.084 | 0.45 |
Peak glucose | 7.81 (7.24 to 8.43) | 8.35 (7.74 to 9.01) | −6.5% (−12 to −1%) | 11.0 ± 5.6 | 0.032 | 0.52 |
Overall submaximal exercise | 5.11 ± 1.06 | 5.36 ± 0.93 | −0.25 (−0.54 to 0.04) | 14.0 ± 4.4 | 0.093 | 0.27 |
Pre submaximal exercise | 5.77 ± 1.04 | 6.14 ± 0.76 | −0.37 (−0.88 to 0.14) | 11.4 ± 7.7 | 0.149 | 0.49 |
Mid submaximal exercise | 4.83 ± 0.94 | 4.88 ± 0.73 | −0.05 (−0.55 to 0.46) | 14.6 ± 9.4 | 0.859 | 0.07 |
Post submaximal exercise | 4.72 ± 0.94 | 5.05 ± 0.75 | −0.34 (−0.84 to 0.17) | 16.1 ± 9.0 | 0.193 | 0.44 |
Overall maximal exercise | 4.96 ± 0.85 | 5.06 ± 0.78 | −0.11 (−0.38 to 0.17) | 11.0 ± 5.0 | 0.441 | 0.14 |
Pre maximal exercise | 5.49 ± 0.84 | 5.54 ± 0.63 | −0.04 (−0.43 to 0.35) | 13.2 ± 8.5 | 0.830 | 0.08 |
Post maximal exercise | 4.42 ± 0.43 | 4.59 ± 0.61 | −0.17 (−0.56 to 0.22) | 8.8 ± 6.4 | 0.382 | 0.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afeef, S.; Tolfrey, K.; Zakrzewski-Fruer, J.K.; Barrett, L.A. Performance of the FreeStyle Libre Flash Glucose Monitoring System during an Oral Glucose Tolerance Test and Exercise in Healthy Adolescents. Sensors 2023, 23, 4249. https://doi.org/10.3390/s23094249
Afeef S, Tolfrey K, Zakrzewski-Fruer JK, Barrett LA. Performance of the FreeStyle Libre Flash Glucose Monitoring System during an Oral Glucose Tolerance Test and Exercise in Healthy Adolescents. Sensors. 2023; 23(9):4249. https://doi.org/10.3390/s23094249
Chicago/Turabian StyleAfeef, Sahar, Keith Tolfrey, Julia K. Zakrzewski-Fruer, and Laura A. Barrett. 2023. "Performance of the FreeStyle Libre Flash Glucose Monitoring System during an Oral Glucose Tolerance Test and Exercise in Healthy Adolescents" Sensors 23, no. 9: 4249. https://doi.org/10.3390/s23094249
APA StyleAfeef, S., Tolfrey, K., Zakrzewski-Fruer, J. K., & Barrett, L. A. (2023). Performance of the FreeStyle Libre Flash Glucose Monitoring System during an Oral Glucose Tolerance Test and Exercise in Healthy Adolescents. Sensors, 23(9), 4249. https://doi.org/10.3390/s23094249