A Compact Aperture-Sharing Sub-6 GHz/Millimeter-Wave Dual-Band Antenna
Abstract
:1. Introduction
2. Geometry
3. Antenna Design
3.1. Dual-Mode HMSIW MW Antenna at 3.5 GHz
3.2. SIDRA at 28 GHz Band
3.3. Design Guideline
3.4. Overall Integrated Structure Analysis
4. Simulation and Measurement Verification
4.1. Measurement Results of 3.5 GHz MW Antenna
4.2. Measurement Results of 28 GHz MMW Antenna
4.3. Comparison
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Huang, D.; Xu, G.; Wu, J.; Wang, W.; Yang, L.; Huang, Z.-X.; Wu, X.-L.; Yin, W.-Y. A microstrip dual-split-ring antenna array for 5G millimeter-wave dual-band applications. IEEE Antennas Wirel. Propag. Lett. 2022, 21, 2025–2029. [Google Scholar] [CrossRef]
- Feng, Y.; Li, J.-Y.; Zhang, L.-K.; Yu, X.-J.; Qi, Y.-X.; Li, D.; Zhou, S.-G. A broadband wide-angle scanning linear array antenna with suppressed mutual coupling for 5G Sub-6G applications. IEEE Antennas Wirel. Propag. Lett. 2022, 21, 366–370. [Google Scholar] [CrossRef]
- Hussain, R.; Abou-Khousa, M.; Iqbal, N.; Algarni, A.; Alhuwaimel, S.I.; Zerguine, A.; Sharawi, M.S. A Multiband Shared Aperture MIMO Antenna for Millimeter-Wave and Sub-6GHz 5G Applications. Sensors 2022, 22, 1808. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.; Aliakbari, H.; Lau, B.K. Co-designed millimeter-wave and Sub-6 GHz antenna for 5G smartphones. IEEE Antennas Wirel. Propag. Lett. 2022, 21, 1995–1999. [Google Scholar] [CrossRef]
- Xia, X.; Yu, C.; Wu, F.; Jiang, Z.H.; Li, Y.-L.; Yao, Y.; Hong, W. Millimeter-wave phased array antenna integrated with the industry design in 5G/B5G smartphones. IEEE Trans. Antennas Propag. 2023, 71, 1883–1888. [Google Scholar] [CrossRef]
- Wang, D.; Chan, C.H. Multiband antenna for WiFi and WiGig communications. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 309–312. [Google Scholar] [CrossRef]
- Sun, W.; Li, Y.; Chang, L.; Li, H.; Qin, X.; Wang, H. Dual-band dual-polarized microstrip antenna array using double-layer gridded patches for 5G millimeter-wave applications. IEEE Trans. Antennas Propag. 2021, 69, 6489–6499. [Google Scholar] [CrossRef]
- Parchin, N.O.; Zhang, J.; Abd-Alhameed, R.A.; Pedersen, G.F.; Zhang, S. A planar dual-polarized phased array with broad bandwidth and quasi-endfire radiation for 5G mobile handsets. IEEE Trans. Antennas Propag. 2021, 69, 6410–6419. [Google Scholar] [CrossRef]
- Zhang, J.F.; Cheng, Y.J.; Ding, Y.R. An S- and V-band dual-polarized antenna based on dual-degenerate-mode feeder for large frequency ratio shared-aperture wireless applications. IEEE Trans. Antennas Propag. 2020, 68, 8127–8132. [Google Scholar] [CrossRef]
- Yang, X.; Ge, L.; Ji, Y.; Zeng, X.; Li, Y.; Ding, C.; Sun, J.; Luk, K.-M. An integrated tri-band antenna system with large frequency ratio for WLAN and WiGig applications. IEEE Trans. Ind. Electron. 2021, 68, 4529–4540. [Google Scholar] [CrossRef]
- Samadi Taheri, M.M.; Abdipour, A.; Zhang, S.; Pedersen, G.F. Integrated millimeter-wave wideband end-fire 5G beam steerable array and low-frequency 4G LTE antenna in mobile terminals. IEEE Trans. Veh. Technol. 2019, 68, 4042–4046. [Google Scholar] [CrossRef]
- Xia, Z.X.; Leung, K.W.; Gu, P.; Chen, R. 3-D-printed wideband high-efficiency dual-frequency antenna for vehicular communications. IEEE Trans. Veh. Technol. 2022, 71, 3457–3469. [Google Scholar] [CrossRef]
- Tong, C.; Yang, B.; Huang, X.; Yang, N.; Liu, X.; Leung, K.W. Compact Shared-Aperture Slot/DR Antenna with Large Frequency Ratio. IEEE Antennas Wirel. Propag. Lett. 2023, 1–5. [Google Scholar] [CrossRef]
- Sun, Y.-X.; Leung, K.W. Substrate-integrated two-port dual-frequency antenna. IEEE Trans. Antennas Propag. 2016, 64, 3692–3697. [Google Scholar] [CrossRef]
- Deng, Q.J.; Pan, Y.M.; Liu, X.Y.; Leung, K.W. A singly-fed dual-band aperture-sharing siw cavity-backed slot antenna with large frequency ratio. IEEE Trans. Antennas Propag. 2023, 71, 1971–1976. [Google Scholar] [CrossRef]
- Ding, X.-H.; Yang, W.-W.; Tang, H.; Guo, L.; Chen, J.-X. A dual-band shared-aperture antenna for microwave and millimeter-wave applications in 5G wireless communication. IEEE Trans. Antennas Propag. 2022, 70, 12299–12304. [Google Scholar] [CrossRef]
- Li, H.; Cheng, Y.; Mei, L.; Guo, L. Frame integrated wideband dual-polarized arrays for mm-wave/sub 6-GHz mobile handsets and its user effects. IEEE Trans. Veh. Technol. 2020, 69, 14330–14340. [Google Scholar] [CrossRef]
- Montoya Moreno, R.; Ala-Laurinaho, J.; Khripkov, A.; Ilvonen, J.; Viikari, V. Dual-polarized mm-wave endfire antenna for mobile devices. IEEE Trans. Antennas Propag. 2020, 68, 5924–5934. [Google Scholar] [CrossRef]
- Ren, J.; Zuo, M.; Zhang, B.; Du, X.; Chen, Z.; Liu, Y.; Yin, Y.Z. Large frequency ratio vivaldi antenna system with low-frequency gain enhancement utilizing dual-function taper slot. IEEE Trans. Antennas Propag. 2022, 70, 4854–4859. [Google Scholar] [CrossRef]
- Cheng, Y.; Dong, Y. Dual-broadband dual-polarized shared-aperture magnetoelectric dipole antenna for 5G applications. IEEE Trans. Antennas Propag. 2021, 69, 7918–7923. [Google Scholar] [CrossRef]
- Cheng, Y.; Dong, Y. Ultra-wideband shared aperture crossed tapered slot antenna for 5G applications. IEEE Antennas Wirel. Propag. Lett. 2022, 22, 472–476. [Google Scholar] [CrossRef]
- Lan, J.; Yu, Z.; Zhou, J.; Hong, W. An aperture-sharing array for (3.5, 28) GHz terminals with steerable beam in millimeter-wave band. IEEE Trans. Antennas Propag. 2020, 68, 4114–4119. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J. Dual-band leaky-wave antenna based on dual- mode composite microstrip line for microwave and millimeter-wave applications. IEEE Trans. Antennas Propag. 2018, 66, 1660–1668. [Google Scholar] [CrossRef]
- Zhang, J.F.; Cheng, Y.J.; Ding, Y.R.; Bai, C.X. A dual-band shared-aperture antenna with large frequency ratio, high aperture reuse efficiency, and high channel isolation. IEEE Trans. Antennas Propag. 2019, 67, 853–860. [Google Scholar] [CrossRef]
- Bae, J.H.; Yoon, Y.J. 5G dual (S-/Ka-) band antenna using thick patch containing slotted cavity array. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 1008–1012. [Google Scholar] [CrossRef]
- Li, T.; Chen, Z.N. Shared-surface dual-band antenna for 5G applications. IEEE Trans. Antennas Propag. 2020, 68, 1128–1133. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, S.; Pedersen, G.F. Dual-band structure reused antenna based on quasi-elliptic bandpass frequency selective surface for 5G application. IEEE Trans. Antennas Propag. 2020, 68, 7612–7617. [Google Scholar] [CrossRef]
- Liu, Z.-G.; Yin, R.-J.; Lu, W.-B. A novel dual-band shared-aperture antenna based on folded reflectarray and fabry-perot cavity. IEEE Trans. Antennas Propag. 2022, 70, 11177–11182. [Google Scholar] [CrossRef]
- Serup, D.E.; Pedersen, G.F.; Zhang, S. Dual-band shared aperture reflectarray and patch antenna array for S- and Ka-bands. IEEE Trans. Antennas Propag. 2022, 70, 2340–2345. [Google Scholar] [CrossRef]
- Mei, P.; Zhang, S.; Pedersen, G.F. A dual-polarized and high-gain X-/Ka-band shared-aperture antenna with high aperture reuse efficiency. IEEE Trans. Antennas Propag. 2021, 69, 1334–1344. [Google Scholar] [CrossRef]
- Zhu, J.; Yang, Y.; Liao, S.; Xue, Q. Aperture-shared millimeter-wave/sub-6 GHz dual-band antenna hybridizing fabry–pérot cavity and fresnel zone plate. IEEE Trans. Antennas Propag. 2021, 69, 8170–8181. [Google Scholar] [CrossRef]
- Zhu, J.; Yang, Y.; Liao, S.; Li, S.; Xue, Q. Dual-band aperture-shared fabry–perot cavity-integrated patch antenna for millimeter-wave/sub-6 GHz communication applications. IEEE Antennas Wirel. Propag. Lett. 2022, 21, 868–872. [Google Scholar] [CrossRef]
- Sun, H.-H.; Lee, Y.H.; Luo, W.; Ow, L.F.; Yusof, M.L.M.; Yucel, A.C. Compact dual-polarized vivaldi antenna with high gain and high polarization purity for GPR applications. Sensors 2021, 21, 503. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Li, X.; Rao, X.; Li, N. Multi-beam conformal array antenna based on highly conductive graphene films for 5G micro base station applications. Sensors 2022, 22, 9681. [Google Scholar] [CrossRef]
- ANSYS. High Frequency Structure Simulator (HFSS 18.9); ANSYS: Canonsburg, PA, USA, 2018. [Google Scholar]
- Xu, F.; Wu, K. Guided-wave and leakage characteristics of substrate integrated waveguide. IEEE Trans. Microw. Theory Tech. 2005, 53, 66–73. [Google Scholar]
- Razavi, S.A.; Neshati, M.H. Development of a linearly polarized cavity-backed antenna using HMSIW technique. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 1307–1310. [Google Scholar] [CrossRef]
- Yang, W.-W.; Ding, X.-H.; Chen, T.-W.; Guo, L.; Qin, W.; Chen, J.-X. A shared-aperture antenna for (3.5, 28) GHz terminals with end-fire and broadside steerable beams in millimeter wave band. IEEE Trans. Antennas Propag. 2022, 70, 9101–9111. [Google Scholar] [CrossRef]
- Li, L.; Hong, W.; Zhang, Y.; Chen, Z.; Chen, P. Design and implementation of an active array antenna with remote controllable radiation patterns for mobile communications. IEEE Trans. Antennas Propag. 2014, 62, 913–921. [Google Scholar] [CrossRef]
- Ding, X.-H.; Yang, W.-W.; Qin, W.; Chen, J.-X. A broadside shared aperture antenna for (3.5, 26) GHz mobile terminals with steerable beam in millimeter-waveband. IEEE Trans. Antennas Propag. 2022, 70, 1806–1815. [Google Scholar] [CrossRef]
Ref. | Frequency (GHz) | Relative BW (%) | Peak Gain (dBi) | Size () | Profile (λ01) | MMW Beam-Steering | MMW Dual Polarization |
---|---|---|---|---|---|---|---|
[9] | 2.4/60 | 6.3/3.5 | 8.0/27.8 | 0.29 | 0.19 | No | Yes |
[10] | 2.4/5/60 | 5.7/23.4/22.6 | 9.8/7.9/8.4 | 1.25 | 0.1 | No | No |
[17] | 0.85/28 | 21/16 | -/12.6 | 0.08 | 0.017 | ±37° (End-fife) | Yes |
[20] | 3.5/28 | 50.31/33.91 | 10.67/14.85 | 1.96 | 0.26 | ±20° (Broadside) | Yes |
[22] | 3.5/28 | 20.7/20.5 | 7.07/11.31 | 0.02 | 0.003 | ±25° (End-fife) | No |
[24] | 3.5/60 | 2.6/6.4 | 7.3/24 | 0.13 | 0.02 | No | No |
[28] | 5.4/25 | 3.6/16.0 | 15.5/22.4 | 5.76 | 0.54 | No | No |
[29] | 3.5/25.8 | 6/20 | 13.7/27.65 | 18.60 | 0.05 | No | No |
[30] | 10/28 | 4.5/9.6 | 13.8/23.6 | 8.00 | 0.57 | No | Yes |
Prop. | 3.5/28 | 3.4/11.8 | 5.34/11.0 | 0.08 | 0.03 | ±45° (Broadside) | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Chai, B.; Chen, J.; Yang, W. A Compact Aperture-Sharing Sub-6 GHz/Millimeter-Wave Dual-Band Antenna. Sensors 2023, 23, 4400. https://doi.org/10.3390/s23094400
Zhang Q, Chai B, Chen J, Yang W. A Compact Aperture-Sharing Sub-6 GHz/Millimeter-Wave Dual-Band Antenna. Sensors. 2023; 23(9):4400. https://doi.org/10.3390/s23094400
Chicago/Turabian StyleZhang, Qinghu, Bitian Chai, Jianxin Chen, and Wenwen Yang. 2023. "A Compact Aperture-Sharing Sub-6 GHz/Millimeter-Wave Dual-Band Antenna" Sensors 23, no. 9: 4400. https://doi.org/10.3390/s23094400
APA StyleZhang, Q., Chai, B., Chen, J., & Yang, W. (2023). A Compact Aperture-Sharing Sub-6 GHz/Millimeter-Wave Dual-Band Antenna. Sensors, 23(9), 4400. https://doi.org/10.3390/s23094400