A Speedy Point Cloud Registration Method Based on Region Feature Extraction in Intelligent Driving Scene
Abstract
:1. Introduction
- (1)
- A new point cloud registration algorithm is proposed in this paper, which exhibits high accuracy, real-time performance, and reliability.
- (2)
- The selection of point clouds in key regions makes only a very small number of point clouds available for registration.
- (3)
- The local geometric features of the point cloud are introduced in our method to complete the point cloud registration process under the constraints of the key point cloud.
2. Research Methods
2.1. Algorithm Framework
2.2. Region of Interest Area
3. Point Cloud Coarse Registration
3.1. FPFH Feature Descriptor
3.2. Singular Value Decomposition to Solve the Transformation Matrix
4. Point Cloud Fine Registration
4.1. Extracting Point Cloud Features
4.2. Searching for Matching Point Pairs
4.3. Calculating the Transformation Matrix
5. Experiments
5.1. Object-Level Point Cloud Registration Experiment
5.2. Multi-Condition Registration Experiment
5.3. Multi-Scene Registration Experiment
5.4. Real-Vehicle Registration Experiment
5.5. Metrological Characteristics Analysis of Lidar
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, Q.; Xie, Y.; Guo, S.; Bai, J.; Shu, Q. Sensing System of Environmental Perception Technologies for Driverless Vehicle: A Review of State of the Art and Challenges. Sens. Actuators A Phys. 2021, 319, 112566. [Google Scholar] [CrossRef]
- Gao, H.; Zhang, X.; Zhao, J.; Li, D. Technology of intelligent driving radar perception based on driving brain. CAAI Trans. Intell. Technol. 2019, 2, 93–100. [Google Scholar] [CrossRef]
- Nagy, B.; Benedek, C. Real-time point cloud alignment for vehicle localization in a high resolution 3d map. In Proceedings of the European Conference on Computer Vision (ECCV) Workshops, Munich, Germany, 8–14 September 2018. [Google Scholar]
- Besl, P.J.; McKay, N.D. A method for registration of 3-dshapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, J.; Liu, Y.; Zhang, X. Point cloud registration algorithm based on the combination of NDT and ICP. Comput. Eng. Appl. 2020, 56, 88–95. [Google Scholar]
- Xue, S.; Zhang, Z.; Meng, X.; Lv, Q.; Tu, X. Point Cloud Registration Method for Pipeline Workpieces Based on RANSAC and Improved ICP Algorithms. IOP Conf. Ser. Mater. Sci. Eng. 2019, 612, 032190. [Google Scholar] [CrossRef]
- Li, J.; Zhang, C.; Xu, Z.; Zhou, H.; Zhang, C. Iterative Distance-Aware Similarity Matrix Convolution with Mutual-Supervised Point Elimination for Efficient Point Cloud Registration. In Proceedings of the Computer Vision—ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020. [Google Scholar]
- Rosen, D.M.; Carlone, L.; Bandeira, A.S.; Leonard, J.J. Se-sync: A certifiably correct algorithm for synchronization over the special euclidean group. Int. J. Robot. Res. 2019, 38, 95–125. [Google Scholar] [CrossRef]
- Maron, H.; Dym, N.; Kezurer, I.; Kovalsky, S.; Lipman, Y. Point registration via efficient convex relaxation. ACM Trans. Graph. (TOG) 2016, 35, 1–12. [Google Scholar] [CrossRef]
- Yang, J.; Li, H.; Dylan, C.; Jia, Y. Go-ICP: A Globally Optimal Solution to 3D ICP Point-Set Registration. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 2241–2254. [Google Scholar] [CrossRef]
- Yang, J.; Cao, Z.; Zhang, Q. A fast and robust local descriptor for 3D point cloud registration. Inf. Sci. 2016, 346–347, 163–179. [Google Scholar] [CrossRef]
- Lu, J.; Bin, W.; Xilu, F. Point cloud registration method based on SIFT feature points combined with ICP. Laser Infrared 2021, 51, 944–950. [Google Scholar]
- Wang, W.; Tian, M.; Yu, J.; Song, C.; Li, J.; Zhou, M. Improved iterative nearest point cloud registration method. Adv. Laser Optoelectron. 2022, 59, 390–399. [Google Scholar]
- Wang, Y.; Solomon, J.M. Deep closest point: Learning representations for point cloud registration. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 3523–3532. [Google Scholar]
- Wang, Y.; Solomon, J.M. Prnet: Self-supervised learning for partial-to-partial registration. arXiv 2019, arXiv:1910.12240. [Google Scholar]
- Qin, T.; Zhao, P.; Qin, P.; Zeng, J.; Chai, R.; Huang, Y. Point cloud registration algorithm based on residual attention mechanism. Comput. Appl. 2022, 42, 2184–2191. [Google Scholar]
- Li, C.; Shi, H.; Li, Z. Point cloud registration method based on convolutional neural network combined with improved Harris-SIFT. Adv. Laser Optoelectron. 2020, 57, 238–247. [Google Scholar]
- Li, J.; Yang, B.; Chen, C.; Habib, A. NRLI-UAV: Non-rigid registration of sequential raw laser scans and images for low-cost UAV LiDAR point cloud quality improvement. ISPRS J. Photogramm. Remote Sens. 2019, 158, 123–145. [Google Scholar] [CrossRef]
- Kang, Z.; Chen, J.; Wang, B. Global registration of subway tunnel point clouds using an augmented extended Kalman filter and central-axis constraint. PLoS ONE 2015, 10, e0126862. [Google Scholar] [CrossRef] [PubMed]
- Prokop, M.; Shaikh, S.A.; Kim, K.-S. Low Overlapping Point Cloud Registration Using Line Features Detection. Remote Sens. 2019, 12, 61. [Google Scholar] [CrossRef]
- Lin, D.; Bannehr, L.; Ulrich, C.; Maas, H.-J. Evaluating Thermal Attribute Mapping Strategies for Oblique Airborne Photogrammetric System AOS-Tx8. Remote Sens. 2019, 12, 112. [Google Scholar] [CrossRef]
- Jieun, B.; Junhyeok, P.; Seongjun, C.; Changwon, L. 3D Global Localization in the Underground Mine Environment Using Mobile LiDAR Mapping and Point Cloud Registration. Sensors 2022, 22, 2873. [Google Scholar]
- Zhao, J.; Chu, J.; Feng, G.; Jiang, Z.; Shi, W.; Gao, Y. Multimodal Point Cloud Registration Based on Adaptive Feature Region in Radiotherapy Guidance. In Proceedings of the International Conference on Virtual Reality and Visualization, Recife, Brazil, 13–14 November 2020. [Google Scholar]
- Gu, B.; Liu, J.; Xiong, H.; Li, T.; Pan, Y. ECPC-ICP: A 6D Vehicle Pose Estimation Method by Fusing the Roadside Lidar Point Cloud and Road Feature. Sensors 2021, 21, 3489. [Google Scholar] [CrossRef]
- He, X.; Pan, S.; Gao, W.; Lu, X. LiDAR-Inertial-GNSS Fusion Positioning System in Urban Environment: Local Accurate Registration and Global Drift-Free. Remote Sens. 2022, 14, 2104. [Google Scholar] [CrossRef]
- Xu, S.; Wang, G.; Wu, D. Research on Internal Positioning Method of Pipeline Robot Based on Data Fusion and Point Cloud Registration; Tsinghua University: Beijing, China, 2022. [Google Scholar]
- Cheng, L.; Wu, Y.; Chen, S.; Zong, W.; Yuan, Y.; Sun, Y.; Zhuang, Q.; Li, M. A Symmetry-Based Method for LiDAR Point Registration. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 285–299. [Google Scholar] [CrossRef]
- Lu, F.; Chen, G.; Liu, Y.; Zhang, L.; Qu, S.; Liu, S.; Gu, R. HRegNet: A Hierarchical Network for Large-Scale Outdoor LiDAR Point Cloud Registration. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 16014–16023. [Google Scholar]
- Wang, W.; Zhao, C.; Zhang, H. PR-Alignment: Multidimensional Adaptive Registration Algorithm Based on Practical Application Scenarios. Machines 2023, 11, 254. [Google Scholar] [CrossRef]
- Rusu, R.B.; Blodow, N.; Beetz, M. Fast Point Feature Histograms (FPFH) for 3D registration. In Proceedings of the IEEE International Conference on Robotics & Automation, Kobe, Japan, 12–17 May 2009. [Google Scholar]
- Geiger, A.; Lenz, P.; Urtasun, R. Are we ready for autonomous driving? the kitti vision benchmark suite. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 3354–3361. [Google Scholar]
- Rusu, R.B.; Blodow, N.; Marton, Z.C.; Beetz, M. Aligning point cloud views using persistent feature histograms. In Proceedings of the IEEE/Rsj International Conference on Intelligent Robots and Systems, Nice, France, 22–26 September 2008; pp. 3384–3391. [Google Scholar]
- Eggert, D.W.; Lorusso, A.; Fisher, R.B. Estimating 3-D rigid body transformations: A comparison of four major algorithms. Mach. Vis. Appl. 1997, 9, 272–290. [Google Scholar] [CrossRef]
- Chen, Y.; Medioni, G. Object Modeling by Registration of Multiple Range Images. Int. J. Image Vis. Comput. 1992, 10, 145–155. [Google Scholar] [CrossRef]
Algorithm | Root Mean Square Error/m | Time/s |
---|---|---|
NDT | 0.032 | 29.32 |
TRICP | 0.036 | 22.71 |
NICP | 0.034 | 7.46 |
Ours | 0.030 | 1.53 |
Time/s | |||||||||
---|---|---|---|---|---|---|---|---|---|
Method | Scene1 | Scene2 | Scene3 | Scene4 | Scene5 | Scene6 | Scene7 | Scene8 | Scene9 |
NDT | 13.80 | 12.50 | 12.75 | 15.47 | 18.48 | 14.83 | 19.42 | 16.08 | 14.32 |
TRICP | 12.24 | 10.37 | 14.43 | 11.98 | 15.72 | 11.73 | 7.18 | 13.51 | 12.20 |
NICP | 12.68 | 12.67 | 19.17 | 13.97 | 11.08 | 12.21 | 13.86 | 15.07 | 15.31 |
Ours | 0.63 | 0.38 | 0.66 | 0.49 | 0.74 | 0.59 | 0.62 | 0.89 | 0.90 |
Method | Road/m | Countryside/m | City/m |
---|---|---|---|
NDT | 0.1427 | 0.1136 | 0.1241 |
TRICP | 0.1346 | 0.08100 | 0.08766 |
NICP | 0.1108 | 0.07548 | 0.08101 |
OURS | 0.07231 | 0.06991 | 0.06766 |
Technical Parameter | |||
---|---|---|---|
Principle of distance measurement | time-of-flight measurement | Scanning frequency | 10 Hz, 20 Hz |
Scanning principle | mechanical rotation | Vertical field of view | 40° (−25~+15°) |
Number of threads | 40 | Vertical angular resolution | minimum 0.33° |
Detection distance | 0.3~200 m | Horizontal field of view | 360° |
Measurement accuracy | ±5 cm (0.3~0.5 m) ±2 cm (0.5~200 m) | Horizontal angular resolution | 0.2° (10 Hz) 0.4° (20 Hz) |
Algorithm | Root Mean Square Error/m |
---|---|
NDT | 0.1229 ± 0.03925 |
NICP | 0.1182 ± 0.04029 |
TRICP | 0.1244 ± 0.06505 |
OURS | 0.05996 ± 0.01751 |
Device Model | Measuring Distance | Ranging Accuracy | Horizontal Field of View | Horizontal Angular Resolution | Vertical Field of View | Vertical Angular Resolution |
---|---|---|---|---|---|---|
Pandar40P | 200 m | ±2~±5 cm | 360° | 0.2~0.4° | 40° | 0.33~6° |
Velodyne HDL_64E | 120 m | ±2 cm | 360° | 0.08~0.35° | 26.9° | 0.4° |
Algorithm | Pandar40P | Velodyne HDL-64E | ||
---|---|---|---|---|
Root Square Mean Error/m | Time/s | Root Square Mean Error/m | Time/s | |
NDT | 0.1229 ± 0.03925 | 27.8158 ± 6.2704 | 0.1169 ± 0.03418 | 23.5018 ± 6.4974 |
NICP | 0.1182 ± 0.04029 | 21.1194 ± 9.9502 | 0.09416 ± 0.04526 | 17.4721 ± 9.9084 |
TRICP | 0.1244 ± 0.06505 | 17.8066 ± 10.8586 | 0.1008 ± 0.05135 | 10.5351 ± 6.7416 |
OURS | 0.05996 ± 0.01751 | 0.5739 ± 0.1227 | 0.06971 ± 0.01597 | 0.5873 ± 0.1470 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, D.; Wang, W.; Li, S.; Sun, P.; Duan, W.; Liu, S. A Speedy Point Cloud Registration Method Based on Region Feature Extraction in Intelligent Driving Scene. Sensors 2023, 23, 4505. https://doi.org/10.3390/s23094505
Yan D, Wang W, Li S, Sun P, Duan W, Liu S. A Speedy Point Cloud Registration Method Based on Region Feature Extraction in Intelligent Driving Scene. Sensors. 2023; 23(9):4505. https://doi.org/10.3390/s23094505
Chicago/Turabian StyleYan, Deli, Weiwang Wang, Shaohua Li, Pengyue Sun, Weiqi Duan, and Sixuan Liu. 2023. "A Speedy Point Cloud Registration Method Based on Region Feature Extraction in Intelligent Driving Scene" Sensors 23, no. 9: 4505. https://doi.org/10.3390/s23094505
APA StyleYan, D., Wang, W., Li, S., Sun, P., Duan, W., & Liu, S. (2023). A Speedy Point Cloud Registration Method Based on Region Feature Extraction in Intelligent Driving Scene. Sensors, 23(9), 4505. https://doi.org/10.3390/s23094505