Margined Horn-Shaped Air Chamber for Body-Conduction Microphone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Simulation Methods
2.1.1. Geometric Parameters
2.1.2. Conditions of Simulation
2.1.3. Signal Processing
2.2. Experimental Methods
3. Results
3.1. Simulation Results
3.1.1. Influence of Shape, Height, and Diameter
3.1.2. Influence of Displacement
3.1.3. Influence of AOI
3.2. Experimental Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morgan, L.; Protopopova, A.; Birkler, R.I.D.; Itin-Shwartz, B.; Sutton, G.A.; Gamliel, A.; Yakobson, B.; Raz, T. Human–dog relationships during the COVID-19 pandemic: Booming dog adoption during social isolation. Humanit. Soc. Sci. Commun. 2020, 7, 155. [Google Scholar] [CrossRef]
- Olivry, T.; Saridomichelakis, M.; Nuttall, T.; Bensignor, E.; Griffin, C.E.; Hill, P.B. Validation of the canine atopic dermatitis extent and severity index (CADESI)-4, a simplified severity scale for assessing skin lesions of atopic dermatitis in dogs. Vet. Dermatol. 2014, 25, 77-e25. [Google Scholar] [CrossRef] [PubMed]
- Nuttall, T.; McEwan, N. Objective measurement of pruritus in dogs: A preliminary study using activity monitors. Vet. Dermatol. 2006, 17, 348–351. [Google Scholar] [CrossRef] [PubMed]
- Hill, P.B.; Lau, P.; Rybnicek, J. Development of an owner-assessed scale to measure the severity of pruritus in dogs. Vet. Dermatol. 2007, 18, 301–308. [Google Scholar] [CrossRef]
- Plant, J.D. Repeatability and reproducibility of numerical rating scales and visual analogue scales for canine pruritus severity scoring. Vet. Dermatol. 2007, 18, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Koblenzer, C.S. Itching and the atopic skin. J. Allergy Clin. Immunol. 1999, 104, S109–S113. [Google Scholar] [CrossRef] [PubMed]
- Harvey, N.D.; Craigon, P.J.; Shaw, S.C.; Blott, S.C.; England, G.C.W. Behavioural differences in dogs with atopic dermatitis suggest stress could be a significant problem associated with chronic pruritus. Animals 2019, 9, 813. [Google Scholar] [CrossRef]
- Wernimont, S.M.; Thompson, R.J.; Mickelsen, S.L.; Smith, S.C.; Alvarenga, I.C.; Gross, K.L. Use of accelerometer activity monitors to detect changes in pruritic behaviors: Interim Clinical data on 6 dogs. Sensors 2018, 18, 249. [Google Scholar] [CrossRef]
- Schwab-Richards, R.; Prost, C.; Steffan, J.; Seewald, W.; Nenci, C.; Roosje, P. Use of activity monitors for assessment of pruritus in an acute model of canine atopic dermatitis. Vet. Dermatol. 2014, 25, 441-e69. [Google Scholar] [CrossRef]
- Griffies, J.D.; Zutty, J.; Sarzen, M.; Soorholtz, S. Wearable sensor shown to specifically quantify pruritic behaviors in dogs. BMC Vet. Res. 2018, 14, 124. [Google Scholar] [CrossRef]
- Chambers, R.D.; Yoder, N.C.; Carson, A.B.; Junge, C.; Allen, D.E.; Prescott, L.M.; Bradley, S.; Wymore, G.; Lloyd, K.; Lyle, S. Deep learning classification of canine behavior using a single collar-mounted accelerometer: Real-world validation. Animals 2021, 11, 1549. [Google Scholar] [CrossRef] [PubMed]
- Kumpulainen, P.; Cardó, A.V.; Somppi, S.; Törnqvist, H.; Väätäjä, H.; Majaranta, P.; Gizatdinova, Y.; Hoog Antink, C.; Surakka, V.; Kujala, M.V.; et al. Dog behaviour classification with movement sensors placed on the harness and the collar. Appl. Anim. Behav. Sci. 2021, 241, 105393. [Google Scholar] [CrossRef]
- Moreau, A.; Anderer, P.; Ross, M.; Cerny, A.; Almazan, T.H.; Peterson, B.; Moreau, A.; Anderer, P.; Ross, M.; Cerny, A.; et al. Detection of nocturnal scratching movements in patients with atopic dermatitis using accelerometers and recurrent neural networks. IEEE J. Biomed. Health Inform. 2018, 22, 1011–1018. [Google Scholar] [CrossRef] [PubMed]
- Chun, K.S.; Kang, Y.J.; Lee, J.Y.; Nguyen, M.; Lee, B.; Lee, R.; Jo, H.H.; Allen, E.; Chen, H.; Kim, J.; et al. A skin-conformable wireless sensor to objectively quantify symptoms of pruritus. Sci. Adv. 2021, 7, eabf9405. [Google Scholar] [CrossRef]
- Okuyama, T.; Hatakeyama, K.; Tanaka, M. Study on an evaluation of human scratching motions by measuring scratch sounds. J. Jpn. Soc. Appl. Electromagn. Mech. 2015, 23, 80–85. [Google Scholar]
- Muramatsu, S.; Hira, E.; Momoi, Y.; Yamamoto, M.; Takamatsu, S.; Itoh, T. Wearable scratching-sound sensing device for animal healthcare. In Proceedings of the 2022 IEEE Sensors, Dallas, TX, USA, 30 October–2 November 2022. [Google Scholar]
- Hu, Y.; Kim, E.G.; Cao, G.; Liu, S.; Xu, Y. Physiological acoustic sensing based on accelerometers: A survey for mobile healthcare. Ann. Biomed. Eng. 2014, 42, 2264–2277. [Google Scholar] [CrossRef]
- Qu, M.; Chen, X.; Yang, D.; Li, D.; Zhu, K.; Guo, X.; Xie, J. Monitoring of physiological sounds with wearable device based on piezoelectric MEMS acoustic sensor. J. Micromech. Microeng. 2022, 32, 014001. [Google Scholar] [CrossRef]
- Ertel, P.Y.; Lawrence, M.; Brown, R.K.; Stern, A.M. Stethoscope acoustics. II. Transmission and filtration patterns. Circulation 1966, 34, 899–909. [Google Scholar] [CrossRef]
- Folds, D.L. Speed of sound and transmission loss in silicone rubbers at ultrasonic frequencies. J. Acoust. Soc. Am. 1974, 56, 1295–1296. [Google Scholar] [CrossRef]
- Yee, K. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 1966, 14, 302–307. [Google Scholar]
- Architectural Institute of Japan. Beginner’s Programming Guide to Numerical Acoustic Simulation, 2nd ed.; CORONA Publishing Co., Ltd.: Tokyo, Japan, 2017; pp. 100–121. [Google Scholar]
- Gasket Design for Optimal Acoustic Performance in MEMS Microphones. Available online: https://www.st.com/resource/en/application_note/dm00103201-gasket-design-for-optimal-acoustic-performance-in-mems-microphones-stmicroelectronics.pdf (accessed on 18 April 2023).
- Noro, Y.; Omoto, Y.; Umeda, K.; Tanaka, F.; Shiratsuka, Y.; Yamada, T.; Isoda, K.; Matsubara, K.; Yamanaka, K.; Gabazza, E.C.; et al. Novel acoustic evaluation system for scratching behavior in itching dermatitis: Rapid and accurate analysis for nocturnal scratching of atopic dermatitis patients. J. Dermatol. 2014, 41, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.A.; Shah, I.A.; Lee, D.-G.; Hur, S. Design approaches of MEMS microphones for enhanced performance. J. Sens. 2019, 2019, 1–26. [Google Scholar] [CrossRef]
Parameter | Sweep Range |
---|---|
Shape | Cylinder, dish, cone, horn, and margined horn |
Height (mm) | 1–5 |
Diameter (mm) | 1–15 |
Displacement (mm) | 0–1 |
AOI (deg) | 0–20 |
Variable | Value |
---|---|
Sound velocity (m/s) | 3.405 × 102 |
Atmosphere density (kg/m3) | 1.242 |
Bulk modulus (Pa) | 1.43954 × 105 |
Space discrete width (m) | 1.0 × 10−4 |
Time discrete width (s) | 2.5 × 10−8 |
Analysis time (s) | 1.0 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muramatsu, S.; Kohata, Y.; Hira, E.; Momoi, Y.; Yamamoto, M.; Takamatsu, S.; Itoh, T. Margined Horn-Shaped Air Chamber for Body-Conduction Microphone. Sensors 2023, 23, 4565. https://doi.org/10.3390/s23094565
Muramatsu S, Kohata Y, Hira E, Momoi Y, Yamamoto M, Takamatsu S, Itoh T. Margined Horn-Shaped Air Chamber for Body-Conduction Microphone. Sensors. 2023; 23(9):4565. https://doi.org/10.3390/s23094565
Chicago/Turabian StyleMuramatsu, Shun, Yuki Kohata, Emi Hira, Yasuyuki Momoi, Michitaka Yamamoto, Seiichi Takamatsu, and Toshihiro Itoh. 2023. "Margined Horn-Shaped Air Chamber for Body-Conduction Microphone" Sensors 23, no. 9: 4565. https://doi.org/10.3390/s23094565
APA StyleMuramatsu, S., Kohata, Y., Hira, E., Momoi, Y., Yamamoto, M., Takamatsu, S., & Itoh, T. (2023). Margined Horn-Shaped Air Chamber for Body-Conduction Microphone. Sensors, 23(9), 4565. https://doi.org/10.3390/s23094565