Shaping Perpendicular Magnetic Anisotropy of Co2MnGa Heusler Alloy Using Ion Irradiation for Magnetic Sensor Applications
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morón, C.; Cabrera, C.; Morón, A.; García, A.; González, M. Magnetic Sensors Based on Amorphous Ferromagnetic Materials: A Review. Sensors 2015, 15, 28340–28366. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Sun, J.; Li, B.; Przybysz, A.; Kosel, J. Magnetic Sensors—A Review and Recent Technologies. Eng. Res. Express 2021, 3, 022005. [Google Scholar] [CrossRef]
- Lenz, J.; Edelstein, A.S. Magnetic Sensors and Their Applications. IEEE Sens. J. 2006, 6, 631–649. [Google Scholar] [CrossRef]
- Zheng, C.; Zhu, K.; De Freitas, S.C.; Chang, J.Y.; Davies, J.E.; Eames, P.; Freitas, P.P.; Kazakova, O.; Kim, C.G.; Leung, C.W.; et al. Magnetoresistive Sensor Development Roadmap (Non-Recording Applications). IEEE Trans. Magn. 2019, 55, 0800130. [Google Scholar] [CrossRef]
- Hirohata, A.; Sukegawa, H.; Yanagihara, H.; Zutic, I.; Seki, T.; Mizukami, S.; Swaminathan, R. Roadmap for Emerging Materials for Spintronic Device Applications. IEEE Trans. Magn. 2015, 51, 0800511. [Google Scholar] [CrossRef]
- Llandro, J.; Palfreyman, J.J.; Ionescu, A.; Barnes, C.H.W. Magnetic Biosensor Technologies for Medical Applications: A Review. Med. Biol. Eng. Comput. 2010, 48, 977–998. [Google Scholar] [CrossRef] [PubMed]
- Vedmedenko, E.Y.; Kawakami, R.K.; Sheka, D.D.; Gambardella, P.; Kirilyuk, A.; Hirohata, A.; Binek, C.; Chubykalo-Fesenko, O.; Sanvito, S.; Kirby, B.J.; et al. The 2020 Magnetism Roadmap. J. Phys. D Appl. Phys. 2020, 53, 453001. [Google Scholar] [CrossRef]
- Mahendra, A.; Gupta, P.; Granville, S.; Kennedy, J. Tailoring of Magnetic Anisotropy by Ion Irradiation for Magnetic Tunnel Junction Sensors. J. Alloys Compd. 2022, 910, 164902. [Google Scholar] [CrossRef]
- Yoo, B.; Na, S.M.; Flatau, A.B.; Pines, D.J. Magnetic Shape Anisotropy Effect on Sensing Performance and Directional Sensitivity in Magnetostrictive Nickel Patch Transducer. J. Intell. Mater. Syst. Struct. 2016, 27, 1075–1091. [Google Scholar] [CrossRef]
- Yen, T.; Witcraft, W.F. Effect of Magnetic Anisotropy on Signal and Noise of NiFe Magnetoresistive Sensor. IEEE Trans. Magn. 1995, 31, 3131–3133. [Google Scholar] [CrossRef]
- Tudu, B.; Tiwari, A. Recent Developments in Perpendicular Magnetic Anisotropy Thin Films for Data Storage Applications. Vacuum 2017, 146, 329–341. [Google Scholar] [CrossRef]
- Göktepe, M. Investigation of BX and BY Components of the Magnetic Flux Leakage in Ferromagnetic Laminated Sample. Adv. Mater. Sci. Eng. 2013, 2013, 708396. [Google Scholar] [CrossRef]
- Yoon, S.; Jang, Y.; Nam, C.; Lee, S.; Kwon, J.; Na, K.; Lee, K.; Cho, B.K. Sensitivity Enhancement of a Giant Magnetoresistance Alternating Spin-Valve Sensor for High-Field Applications. J. Appl. Phys. 2012, 111, 07E504. [Google Scholar] [CrossRef]
- Liu, H.; Bedau, D.; Backes, D.; Katine, J.A.; Langer, J.; Kent, A.D. Ultrafast Switching in Magnetic Tunnel Junction Based Orthogonal Spin Transfer Devices. Appl. Phys. Lett. 2010, 97, 242510. [Google Scholar] [CrossRef]
- Zhang, X.; Cai, W.; Wang, M.; Pan, B.; Cao, K.; Guo, M.; Zhang, T.; Cheng, H.; Li, S.; Zhu, D.; et al. Spin-Torque Memristors Based on Perpendicular Magnetic Tunnel Junctions for Neuromorphic Computing. Adv. Sci. 2021, 8, 2004645. [Google Scholar] [CrossRef]
- Song, C.; Wang, Y.Y.; Li, X.J.; Wang, G.Y.; Pan, F. Interlayer Magnetostatic Coupling and Linear Magnetoresistance in [Pd/Co]/MgO/Co Junction Sensor. Appl. Phys. Lett. 2012, 101, 062404. [Google Scholar] [CrossRef]
- Wisniowski, P.; Wrona, J.; Stobiecki, T.; Cardoso, S.; Freitas, P.P. Magnetic Tunnel Junctions Based on Out-of-Plane Anisotropy Free and in-Plane Pinned Layer Structures for Magnetic Field Sensors. IEEE Trans. Magn. 2012, 48, 3840–3842. [Google Scholar] [CrossRef]
- Liu, X.; Ren, C.; Xiao, G. Magnetic Tunnel Junction Field Sensors with Hard-Axis Bias Field. J. Appl. Phys. 2002, 92, 4722. [Google Scholar] [CrossRef]
- Lee, Y.C.; Chao, C.T.; Li, L.C.; Suen, Y.W.; Horng, L.; Wu, T.H.; Chang, C.R.; Wu, J.C. Magnetic Tunnel Junction Based Out-of-Plane Field Sensor with Perpendicular Magnetic Anisotropy in Reference Layer. J. Appl. Phys. 2015, 117, 17A320. [Google Scholar] [CrossRef]
- Nishimura, N.; Hirai, T.; Koganei, A.; Ikeda, T.; Okano, K.; Sekiguchi, Y.; Osada, Y. Magnetic Tunnel Junction Device with Perpendicular Magnetization Films for High-Density Magnetic Random Access Memory. J. Appl. Phys. 2002, 91, 5246. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Z.; Jin, Q.Y.; Liu, Y. Domain Nucleation Mediated Spin-Transfer Switching in Magnetic Nanopillars with Perpendicular Anisotropy. Appl. Phys. Lett. 2008, 92, 122502. [Google Scholar] [CrossRef]
- Liang, X.; Matyushov, A.; Hayes, P.; Schell, V.; Dong, C.; Chen, H.; He, Y.; Will-Cole, A.; Quandt, E.; Martins, P.; et al. Roadmap on Magnetoelectric Materials and Devices. IEEE Trans. Magn. 2021, 57, 400157. [Google Scholar] [CrossRef]
- Fassbender, J.; McCord, J. Magnetic Patterning by Means of Ion Irradiation and Implantation. J. Magn. Magn. Mater. 2008, 320, 579–596. [Google Scholar] [CrossRef]
- Sbiaa, R.; Meng, H.; Piramanayagam, S.N. Materials with Perpendicular Magnetic Anisotropy for Magnetic Random Access Memory. Phys. Status Solidi (RRL) Rapid Res. Lett. 2011, 5, 413–419. [Google Scholar] [CrossRef]
- Stinson, D.G.; Shin, S.-C. Magnetization and Anisotropy of Co/Pd Multilayer Thin Films. J. Appl. Phys. 1990, 67, 4459–4461. [Google Scholar] [CrossRef]
- Lin, C.J.; Gorman, G.L.; Lee, C.H.; Farrow, R.F.C.; Marinero, E.E.; Do, H.v.; Notarys, H.; Chien, C.J. Magnetic and Structural Properties of Co/Pt Multilayers. J. Magn. Magn. Mater. 1991, 93, 194–206. [Google Scholar] [CrossRef]
- Allenspach, R.; Stampanoni, M.; Bischof, A. Magnetic Domains in Thin Epitaxial Co/Au(111) Films. Phys. Rev. Lett. 1990, 65, 3344–3347. [Google Scholar] [CrossRef] [PubMed]
- Veres, T.; Cai, M.; Cochrane, R.W.; Roorda, S. Ion-Beam Modification of Co/Ag Multilayers I: Structural Evolution and Magnetic Response. J. Appl. Phys. 2000, 87, 8504–8512. [Google Scholar] [CrossRef]
- Chen, J.Y.; Lau, Y.C.; Coey, J.M.D.; Li, M.; Wang, J.P. High Performance MgO-Barrier Magnetic Tunnel Junctions for Flexible and Wearable Spintronic Applications. Sci. Rep. 2017, 7, 42001. [Google Scholar] [CrossRef]
- Schmalhorst, J.; Reiss, G. Transport Properties of Magnetic Tunnel Junctions with Ion Irradiated AlOx Barriers. J. Magn. Magn. Mater. 2004, 272–276, 2003–2004. [Google Scholar] [CrossRef]
- Salaheldeen, M.; Méndez, M.; Vega, V.; Fernández, A.; Prida, V.M. Tuning Nanohole Sizes in Ni Hexagonal Antidot Arrays: Large Perpendicular Magnetic Anisotropy for Spintronic Applications. ACS Appl. Nano Mater. 2019, 2, 1866–1875. [Google Scholar] [CrossRef]
- Salaheldeen, M.; Martínez-Goyeneche, L.; Álvarez-Alonso, P.; Fernández, A. Enhancement the Perpendicular Magnetic Anisotropy of Nanopatterned Hard/Soft Bilayer Magnetic Antidot Arrays for Spintronic Application. Nanotechnology 2020, 31, 485708. [Google Scholar] [CrossRef] [PubMed]
- Salaheldeen, M.; Vega, V.; Ibabe, A.; Jaafar, M.; Asenjo, A.; Fernandez, A.; Prida, V.M. Tailoring of Perpendicular Magnetic Anisotropy in Dy13Fe87 Thin Films with Hexagonal Antidot Lattice Nanostructure. Nanomaterials 2018, 8, 227. [Google Scholar] [CrossRef] [PubMed]
- Krupinski, M.; Sobieszczyk, P.; Zieliński, P.; Marszałek, M. Magnetic Reversal in Perpendicularly Magnetized Antidot Arrays with Intrinsic and Extrinsic Defects. Sci. Rep. 2019, 9, 13276. [Google Scholar] [CrossRef]
- Ouk, M.; Beach, G.S.D. Perpendicularly Magnetized Thin-Film Antidot Arrays for Superparamagnetic Microbead Actuation. IEEE Trans. Magn. 2019, 55, 4600707. [Google Scholar] [CrossRef]
- Mallick, S.; Mishra, S.S.; Bedanta, S. Relaxation Dynamics in Magnetic Antidot Lattice Arrays of Co/Pt with Perpendicular Anisotropy. Sci. Rep. 2018, 8, 11648. [Google Scholar] [CrossRef]
- Salaheldeen, M.; Nafady, A.; Abu-Dief, A.M.; Díaz Crespo, R.; Fernández-García, M.P.; Andrés, J.P.; López Antón, R.; Blanco, J.A.; Álvarez-Alonso, P. Enhancement of Exchange Bias and Perpendicular Magnetic Anisotropy in CoO/Co Multilayer Thin Films by Tuning the Alumina Template Nanohole Size. Nanomaterials 2022, 12, 2544. [Google Scholar] [CrossRef]
- Tavares, S.; Yang, K.; Meyers, M.A. Heusler Alloys: Past, Properties, New Alloys, and Prospects. Prog. Mater. Sci. 2023, 132, 101017. [Google Scholar] [CrossRef]
- Elphick, K.; Frost, W.; Samiepour, M.; Kubota, T.; Takanashi, K.; Sukegawa, H.; Mitani, S.; Hirohata, A. Heusler Alloys for Spintronic Devices: Review on Recent Development and Future Perspectives. Sci. Technol. Adv. Mater. 2021, 22, 235–271. [Google Scholar] [CrossRef]
- Tang, K.; Wen, Z.; Lau, Y.C.; Sukegawa, H.; Seki, T.; Mitani, S. Magnetization Switching Induced by Spin-Orbit Torque from Co2MnGa Magnetic Weyl Semimetal Thin Films. Appl. Phys. Lett. 2021, 118, 062402. [Google Scholar] [CrossRef]
- Reichlova, H.; Schlitz, R.; Beckert, S.; Swekis, P.; Markou, A.; Chen, Y.C.; Kriegner, D.; Fabretti, S.; Hyeon Park, G.; Niemann, A.; et al. Large Anomalous Nernst Effect in Thin Films of the Weyl Semimetal Co2MnGa. Appl. Phys. Lett. 2018, 113, 212405. [Google Scholar] [CrossRef]
- Guin, S.N.; Manna, K.; Noky, J.; Watzman, S.J.; Fu, C.; Kumar, N.; Schnelle, W.; Shekhar, C.; Sun, Y.; Gooth, J.; et al. Anomalous Nernst Effect beyond the Magnetization Scaling Relation in the Ferromagnetic Heusler Compound Co2MnGa. NPG Asia Mater. 2019, 11, 16. [Google Scholar] [CrossRef]
- Zhu, Z.; Higo, T.; Nakatsuji, S.; Otani, Y. Magnetic and Transport Properties of Amorphous, B2 and L21 Co2MnGa Thin Films. AIP Adv. 2020, 10, 085020. [Google Scholar] [CrossRef]
- Ayuela, A.; Enkovaara, J.; Ullakko, K.; Nieminen, R.M. Structural Properties of Magnetic Heusler Alloys. J. Phys. Condens. Matter 1999, 11, 2017–2026. [Google Scholar] [CrossRef]
- Khmelevskyi, S.; Simon, E.; Szunyogh, L. Antiferromagnetism in Ru2MnZ (Z = Sn, Sb, Ge, Si) Full Heusler Alloys: Effects of Magnetic Frustration and Chemical Disorder. Phys. Rev. B Condens. Matter Mater. Phys. 2015, 91, 094432. [Google Scholar] [CrossRef]
- Asma, B.; Belkharroubi, F.; Ibrahim, A.; Lamia, B.; Mohammed, A.; Belkilali, W.; Azzi, S.; Al-Douri, Y. Structural, Mechanical, Magnetic, Electronic, and Thermal Investigations of Ag2YB (Y = Nd, Sm, Gd) Full-Heusler Alloys. Emergent Mater. 2021, 4, 1769–1783. [Google Scholar] [CrossRef]
- da Silva, E.Z.; Jepsen, O.; Andersen, O.K. Electronic Properties of Ni-Based Heusler Alloys. Solid State Commun. 1988, 67, 13–14. [Google Scholar] [CrossRef]
- Qawasmeh, Y.; Hamad, B. Investigation of the Structural, Electronic, and Magnetic Properties of Ni-Based Heusler Alloys from First Principles. J. Appl. Phys. 2012, 111, 033905. [Google Scholar] [CrossRef]
- Khovaylo, V.v.; Voronin, A.I.; Zueva, V.Y.; Seredina, M.A.; Chatterdjee, R. Fe-Based Semiconducting Heusler Alloys. Semiconductors 2017, 51, 718–721. [Google Scholar] [CrossRef]
- Oxley, D.P.; Tebble, R.S.; Williams, K.C. Heusler Alloys. J. Appl. Phys. 1963, 34, 1362–1364. [Google Scholar] [CrossRef]
- Ritchie, L.; Xiao, G.; Ji, Y.; Chen, Y.; Chien, L.; Zhang, M.; Chen, J.; Liu, Z.; Wu, G.; Zhang, X. Magnetic, Structural, and Transport Properties of the Heusler Alloys Co2MnSi and NiMnSb. Phys. Rev. B Condens. Matter Mater. Phys. 2003, 68, 104430. [Google Scholar] [CrossRef]
- Wurmehl, S.; Fecher, G.H.; Kandpal, H.C.; Ksenofontov, V.; Felser, C.; Lin, H.J. Investigation of Co2FeSi: The Heusler Compound with Highest Curie Temperature and Magnetic Moment. Appl. Phys. Lett. 2006, 88, 032503. [Google Scholar] [CrossRef]
- Mizukami, S.; Watanabe, D.; Oogane, M.; Ando, Y.; Miura, Y.; Shirai, M.; Miyazaki, T. Low Damping Constant for Co2FeAl Heusler Alloy Films and Its Correlation with Density of States. J. Appl. Phys. 2009, 105, 07D306. [Google Scholar] [CrossRef]
- Rhee, J.Y.; Kudryavtsev, Y.V.; Kim, K.W.; Lee, Y.P. PECULIAR OPTICAL PROPERTIES OF Co2MnGa ALLOYS. ASEAN J. Sci. Technol. Dev. 2017, 24, 1–6. [Google Scholar] [CrossRef]
- Han, J.; McGoldrick, B.C.; Chou, C.T.; Safi, T.S.; Hou, J.T.; Liu, L. Current-Induced Switching of a Ferromagnetic Weyl Semimetal Co2MnGa. Appl. Phys. Lett. 2021, 119, 212409. [Google Scholar] [CrossRef]
- Sato, T.; Kokado, S.; Kosaka, S.; Ishikawa, T.; Ogawa, T.; Tsunoda, M. Large Negative Anisotropic Magnetoresistance in Co2MnGa Heusler Alloy Epitaxial Thin Films. Appl. Phys. Lett. 2018, 113, 112407. [Google Scholar] [CrossRef]
- Safi, T.S.; Chou, C.T.; Hou, J.T.; Han, J.; Liu, L. Spin-Generation in Magnetic Weyl Semimetal Co2MnGa across Varying Degree of Chemical Order. Appl. Phys. Lett. 2022, 121, 092404. [Google Scholar] [CrossRef]
- Ludbrook, B.M.; Ruck, B.J.; Granville, S. Perpendicular Magnetic Anisotropy in Co2MnGa and Its Anomalous Hall Effect. Appl. Phys. Lett. 2017, 110, 062408. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, Y.; Cabero, M.A.Z.; Wei, B.; Tu, S.; Liu, S.; Yu, D.; Ansermet, J.P.; Granville, S.; Yu, H. Anomalous Nernst Effect in Co2MnGa Thin Films with Perpendicular Magnetic Anisotropy. J. Magn. Magn. Mater. 2020, 500, 166397. [Google Scholar] [CrossRef]
- Pechan, M.J.; Yu, C.; Carr, D.; Palmstrøm, C.J. Remarkable Strain-Induced Magnetic Anisotropy in Epitaxial Co2MnGa (0 0 1) Films. J. Magn. Magn. Mater. 2005, 286, 340–345. [Google Scholar] [CrossRef]
- Wang, K.; Tang, Y.; Xiao, X.; Liu, J. Effects of Pd- and Ta-Buffer Layer on Magnetic and Interfacial Perpendicular Properties of Sputtered Co2FeSi/MgO Heterostructures. Surf. Eng. 2020, 37, 497–504. [Google Scholar] [CrossRef]
- Sun, M.; Kubota, T.; Kawato, Y.; Takahashi, S.; Tsukamoto, A.; Sonobe, Y.; Takanashi, K. Buffer-Layer Dependence of Interface Magnetic Anisotropy in Co2Fe0.4Mn0.6Si Heusler Alloy Ultrathin Films. IEEE Trans. Magn. 2017, 53, 2600404. [Google Scholar] [CrossRef]
- Abdallah, I.; Pradines, B.; Ratel-Ramond, N.; Benassayag, G.; Arras, R.; Calmels, L.; Bobo, J.F.; Snoeck, E.; Biziere, N. Evolution of Magnetic Properties and Damping Coefficient of Co2MnSi Heusler Alloy with Mn/Si and Co/Mn Atomic Disorder. J. Phys. D Appl. Phys. 2017, 50, 035003. [Google Scholar] [CrossRef]
- Gupta, P.; Fiedler, H.; Rubanov, S.; Kennedy, J. Magnetisation and Magnetic Anisotropy of Ion Beam Synthesised Iron Nitride. J. Magn. Magn. Mater. 2021, 517, 167388. [Google Scholar] [CrossRef]
- Ferré, J.; Chappert, C.; Bernas, H.; Jamet, J.-P.; Meyer, P.; Kaitasov, O.; Lemerle, S.; Mathet, V.; Rousseaux, F.; Launois, H. Irradiation Induced Effects on Magnetic Properties of Pt/Co/Pt Ultrathin Films. J. Magn. Magn. Mater. 1999, 198–199, 191–193. [Google Scholar] [CrossRef]
- Fassbender, J.; Ravelosona, D.; Samson, Y. Tailoring Magnetism by Light-Ion Irradiation. J. Phys. D Appl. Phys. 2004, 37, R179. [Google Scholar] [CrossRef]
- Kinoshita, K.; Honjo, H.; Fukami, S.; Nebashi, R.; Tokutome, K.; Murahata, M.; Miura, S.; Kasai, N.; Ikeda, S.; Ohno, H. Plasma Process Induced Physical Damages on Multilayered Magnetic Films for Magnetic Domain Wall Motion. Jpn. J. Appl. Phys. 2014, 53, 03DF03. [Google Scholar] [CrossRef]
- Satake, M.; Yamada, M. Degradation of Perpendicular Magnetic Anisotropy in CoFeB Film after H2 Plasma Irradiation. Jpn. J. Appl. Phys. 2017, 56, 046202. [Google Scholar] [CrossRef]
- Montoya, E.A.; Chen, J.R.; Ngelale, R.; Lee, H.K.; Tseng, H.W.; Wan, L.; Yang, E.; Braganca, P.; Boyraz, O.; Bagherzadeh, N.; et al. Immunity of Nanoscale Magnetic Tunnel Junctions with Perpendicular Magnetic Anisotropy to Ionizing Radiation. Sci. Rep. 2020, 10, 10220. [Google Scholar] [CrossRef]
- Alamdar, M.; Chang, L.J.; Jarvis, K.; Kotula, P.; Cui, C.; Gearba-Dolocan, R.; Liu, Y.; Antunano, E.; Manuel, J.E.; Vizkelethy, G.; et al. Irradiation Effects on Perpendicular Anisotropy Spin-Orbit Torque Magnetic Tunnel Junctions. IEEE Trans. Nucl. Sci. 2021, 68, 665–670. [Google Scholar] [CrossRef]
- He, Q.; Shi, H.; Wang, Y.; Cao, L.; Gu, X.; Wu, J.; Hong, G.; Li, M. High-Dose X-Ray Radiation Induced MgO Degradation and Breakdown in Spin Transfer Torque Magnetic Tunnel Junctions. Sci. Rep. 2022, 12, 18620. [Google Scholar] [CrossRef] [PubMed]
- Narita, Y.; Takahashi, Y.; Harada, M.; Oikawa, K.; Kobayashi, D.; Hirose, K.; Sato, H.; Ikeda, S.; Endoh, T.; Ohno, H. Fast Neutron Tolerance of the Perpendicular-Anisotropy CoFeB-MgO Magnetic Tunnel Junctions with Junction Diameters between 46 and 64 nm. Jpn. J. Appl. Phys. 2017, 56, 0802B3. [Google Scholar] [CrossRef]
- Xiao, T.P.; Bennett, C.H.; Mancoff, F.B.; Manuel, J.E.; Hughart, D.R.; Jacobs-Gedrim, R.B.; Bielejec, E.S.; Vizkelethy, G.; Sun, J.; Aggarwal, S.; et al. Heavy-Ion-Induced Displacement Damage Effects in Magnetic Tunnel Junctions with Perpendicular Anisotropy. IEEE Trans. Nucl. Sci. 2021, 68, 581–587. [Google Scholar] [CrossRef]
- Vogel, T.; Zintler, A.; Kaiser, N.; Guillaume, N.; Lefèvre, G.; Lederer, M.; Serra, A.L.; Piros, E.; Kim, T.; Schreyer, P.; et al. Structural and Electrical Response of Emerging Memories Exposed to Heavy Ion Radiation. ACS Nano 2022, 16, 14463–14478. [Google Scholar] [CrossRef] [PubMed]
- Bruchhaus, L.; Mazarov, P.; Bischoff, L.; Gierak, J.; Wieck, A.D.; Hövel, H. Comparison of Technologies for Nano Device Prototyping with a Special Focus on Ion Beams: A Review. Appl. Phys. Rev. 2017, 4, 011302. [Google Scholar] [CrossRef]
- Leveneur, J.; Kennedy, J.; Williams, G.V.M.; Metson, J.; Markwitz, A. Large Room Temperature Magnetoresistance in Ion Beam Synthesized Surface Fe Nanoclusters on SiO2. Appl. Phys. Lett. 2011, 98, 053111. [Google Scholar] [CrossRef]
- Lee, M.S.; Chopdekar, R.V.; Shafer, P.; Arenholz, E.; Takamura, Y. Modification of Magnetocrystalline Anisotropy via Ion-Implantation. AIP Adv. 2020, 10, 862–867. [Google Scholar] [CrossRef]
- Gupta, P.; Williams, G.V.M.; Hübner, R.; Vajandar, S.; Osipowicz, T.; Heinig, K.H.; Becker, H.W.; Markwitz, A. Self-Assembly of Magnetic Nanoclusters in Diamond-like Carbon by Diffusion Processes Enhanced by Collision Cascades. Appl. Phys. Lett. 2017, 110, 141901. [Google Scholar] [CrossRef]
- Schafer, D.; Geshev, J.; Nicolodi, S.; Pereira, L.G.; Schmidt, J.E.; Grande, P.L. Controlled Rotation of the Exchange-Bias Direction in IrMn/Cu/Co via Ion Irradiation. Appl. Phys. Lett. 2008, 93, 042501. [Google Scholar] [CrossRef]
- Demeter, J.; Meersschaut, J.; Almeida, F.; Brems, S.; van Haesendonck, C.; Teichert, A.; Steitz, R.; Temst, K.; Vantomme, A. Exchange Bias by Implantation of O Ions into Co Thin Films. Appl. Phys. Lett. 2010, 96, 132503. [Google Scholar] [CrossRef]
- Lin, J.J.; Roshan, M.v.; Pan, Z.Y.; Verma, R.; Lee, P.; Springham, S.v.; Tan, T.L.; Rawat, R.S. FePt Nanoparticle Formation with Lower Phase Transition Temperature by Single Shot Plasma Focus Ion Irradiation. J. Phys. D Appl. Phys. 2008, 41, 135213. [Google Scholar] [CrossRef]
- Lai, C.H.; Yang, C.H.; Chiang, C.C. Ion-Irradiation-Induced Direct Ordering of L10 FePt Phase. Appl. Phys. Lett. 2003, 83, 4550–4552. [Google Scholar] [CrossRef]
- Yang, C.-H.; Lai, C.-H.; Chiang, C.C. Low-Ordering-Temperature Fabrication of FePt by Ion Irradiation. IEEE Trans. Magn. 2004, 40, 2519–2521. [Google Scholar] [CrossRef]
- Kuświk, P.; Stobiecki, F.; Szymański, B.; Urbaniak, M.; Falkowski, M.; Jagielski, J.; Mazalski, P. Effect of He Ions Irradiation on Anisotropy and Magnetoresistance of (NiFe/Au/Co/Au)10 Multilayers. Nucl. Instrum. Methods Phys. Res. B 2012, 272, 88–91. [Google Scholar] [CrossRef]
- Kennedy, J.; Williams, G.V.M.; Murmu, P.P.; Ruck, B.J. Intrinsic Magnetic Order and Inhomogeneous Transport in Gd-Implanted Zinc Oxide. Phys. Rev. B Condens. Matter Mater. Phys. 2013, 88, 214423. [Google Scholar] [CrossRef]
- Murmu, P.P.; Kennedy, J.; Williams, G.V.M.; Ruck, B.J.; Granville, S.; Chong, S.V. Observation of Magnetism, Low Resistivity, and Magnetoresistance in the near-Surface Region of Gd Implanted ZnO. Appl. Phys. Lett. 2012, 101, 082408. [Google Scholar] [CrossRef]
- Kennedy, J.; Markwitz, A.; Li, Z.; Gao, W.; Kendrick, C.; Durbin, S.M.; Reeves, R. Modification of Electrical Conductivity in RF Magnetron Sputtered ZnO Films by Low-Energy Hydrogen Ion Implantation. Curr. Appl. Phys. 2006, 6, 495–498. [Google Scholar] [CrossRef]
- Kennedy, J.; Sundrakannan, B.; Katiyar, R.S.; Markwitz, A.; Li, Z.; Gao, W. Raman Scattering Investigation of Hydrogen and Nitrogen Ion Implanted ZnO Thin Films. Curr. Appl. Phys. 2008, 8, 291–294. [Google Scholar] [CrossRef]
- Sandupatla, A.; Arulkumaran, S.; Ing, N.G.; Nitta, S.; Kennedy, J.; Amano, H. Vertical GaN-on-GaN Schottky Diodes as α-Particle Radiation Sensorsc. Micromachines 2020, 11, 519. [Google Scholar] [CrossRef]
- Oliviero, E.; Peripolli, S.; Amaral, L.; Fichtner, P.F.P.; Beaufort, M.F.; Barbot, J.F.; Donnelly, S.E. Damage Accumulation in Neon Implanted Silicon. J. Appl. Phys. 2006, 100, 043505. [Google Scholar] [CrossRef]
- Teixeira, B.M.S.; Timopheev, A.A.; Caçoilo, N.; Cuchet, L.; Mondaud, J.; Childress, J.R.; Magalhães, S.; Alves, E.; Sobolev, N.A. Ar+ ion Irradiation of Magnetic Tunnel Junction Multilayers: Impact on the Magnetic and Electrical Properties. J. Phys. D Appl. Phys. 2020, 53, 455003. [Google Scholar] [CrossRef]
- Srivastava, P.C.; Tripathi, J.K. Giant Magnetoresistance (GMR) in Swift Heavy Ion Irradiated Fe Films on c-Silicon (Fe/c-Si). J. Phys. D Appl. Phys. 2006, 39, 1465–1471. [Google Scholar] [CrossRef]
- Gupta, R.; Ansari, R.; Khandelwal, A.; Fassbender, J.; Gupta, A. Influence of Cr-Ions on the Magnetic Behaviour of FeCo Film. Nucl. Instrum. Methods Phys. Res. B 2008, 266, 1407–1410. [Google Scholar] [CrossRef]
- Kumar, S.R.; Phase, D.M.; Gupta, A.; Pandey, A.C.; Gupta, R. Effects of Swift Heavy Ion-Irradiation on Magnetic Properties of Co-Doped TiO2. AIP Adv. 2021, 11, 025037. [Google Scholar] [CrossRef]
- Wang, B.; Wang, M.; Zhang, H.; Wang, Z.; Zhuo, Y.; Ma, X.; Cao, K.; Wang, L.; Zhao, Y.; Wang, T.; et al. Ionization and Displacement Damage on Nanostructure of Spin-Orbit Torque Magnetic Tunnel Junction. IEEE Trans. Nucl. Sci. 2022, 69, 43–49. [Google Scholar] [CrossRef]
- Gaur, N.; Kundu, S.; Piramanayagam, S.N.; Maurer, S.L.; Tan, H.K.; Wong, S.K.; Steen, S.E.; Yang, H.; Bhatia, C.S. Lateral Displacement Induced Disorder in L10-FePt Nanostructures by Ion-Implantation. Sci. Rep. 2013, 3, 1907. [Google Scholar] [CrossRef]
- Baglin, J.; Rettner, C.; Terris, B.D.; Weller, D.K.; Thiele, J.-U.; Kellock, A.; Anders, S.; Thomson, T. Ion Beam Modification of Perpendicular Magnetic Anisotropy in (Co/Pt)n Multilayers and FePt Thin Films. In Engineering Thin Films with Ion Beams, Nanoscale Diagnostics, and Molecular Manufacturing; Knystautas, E.J., Kirk, W.P., Browning, V., Eds.; SPIE: Bellingham, WA, USA, 2001; Volume 4468, pp. 1–7. [Google Scholar] [CrossRef]
- Park, J.-Y.Y.; Kim, J.-M.M.; Ryu, J.; Jeong, J.; Park, B.-G.G. Effects of Proton and Ion Beam Radiation on Magnetic Tunnel Junctions. Thin Solid Films 2019, 686, 137432. [Google Scholar] [CrossRef]
- Gweon, H.K.; Yun, S.J.; Lim, S.H. A Very Large Perpendicular Magnetic Anisotropy in Pt/Co/MgO Trilayers Fabricated by Controlling the MgO Sputtering Power and Its Thickness. Sci. Rep. 2018, 8, 1266. [Google Scholar] [CrossRef]
- Kennedy, J.V.; Trompetter, W.J.; Murmu, P.P.; Leveneur, J.; Gupta, P.; Fiedler, H.; Fang, F.; Futter, J.; Purcell, C. Evolution of Rutherford’s Ion Beam Science to Applied Research Activities at GNS Science. J. R. Soc. N. Z. 2021, 51, 574–591. [Google Scholar] [CrossRef]
- Ahmed, S.; Cui, X.Y.; Murmu, P.P.; Ding, X.; Chu, X.Z.; Sathish, C.I.; Bao, N.N.; Liu, R.; Zhao, W.Y.; Kennedy, J.; et al. Doping and Defect Engineering Induced Extremely High Magnetization and Large Coercivity in Co Doped MoTe2. J. Alloys Compd. 2022, 918, 165750. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM—The Stopping and Range of Ions in Matter (2010). Nucl. Instrum. Methods Phys. Res. B 2010, 268, 1818–1823. [Google Scholar] [CrossRef]
- Mutzke, A.G.; Schneider, R.; Eckstein, W.; Dohmen, R.; Schmid, K.; von Toussaint, U.; Badelow, G. SDTrimSP Version 5.07. (IPP 2019-02). Garch. Max-Planck-Inst. Plasmaphys. 2019, 58, 7250–7257. [Google Scholar]
- Kinchin, G.H.; Pease, R.S. The Displacement of Atoms in Solids by Radiation. Rep. Prog. Phys. 1955, 18, 1–51. [Google Scholar] [CrossRef]
- Zhang, Y.; Dubuis, G.; Butler, T.; Granville, S. Fractal Analysis of Skyrmions Generated by Field-Assisted Fine-Tuning of Magnetic Anisotropy. Phys. Rev. Appl. 2021, 15, 014020. [Google Scholar] [CrossRef]
- Avasthi, D.K.; Mehta, G.K. Ion Matter Interaction. In Swift Heavy Ions for Materials Engineering and Nanostructuring; Springer Series in Materials Science; Springer: Dordrecht, The Netherlands, 2011; Volume 145, pp. 47–66. [Google Scholar] [CrossRef]
- Norgett, M.J.; Robinson, M.T.; Torrens, I.M. A Proposed Method of Calculating Displacement Dose Rates. Nucl. Eng. Des. 1975, 33, 50–54. [Google Scholar] [CrossRef]
- Mendisch, S.; Riente, F.; Ahrens, V.; Gnoli, L.; Haider, M.; Opel, M.; Kiechle, M.; Ruo Roch, M.; Becherer, M. Controlling Domain-Wall Nucleation in Ta/Co–Fe–B/Mg O Nanomagnets via Local Ga+ Ion Irradiation. Phys. Rev. Appl. 2021, 16, 014039. [Google Scholar] [CrossRef]
- Gupta, R.; Han, K.-H.; Lieb, K.P.; Müller, G.A.; Schaaf, P.; Zhang, K. Influence of Ion Implantation on the Magnetic Properties of Thin FeCo Films. J. Appl. Phys. 2005, 97, 073911. [Google Scholar] [CrossRef]
- Ziegler, J.F. SRIM & TRIM. Available online: http://www.srim.org/ (accessed on 15 December 2019).
- Gabor, M.S.; Nasui, M.; Timar-Gabor, A. Perpendicular Magnetic Anisotropy in Pt/Co-Based Full Heusler Alloy/MgO Thin-Film Structures. Phys. Rev. B 2019, 100, 144438. [Google Scholar] [CrossRef]
- Chen, P.J.; Iunin, Y.L.; Cheng, S.F.; Shull, R.D. Underlayer Effect on Perpendicular Magnetic Anisotropy in Co20Fe60B20/MgO Films. IEEE Trans. Magn. 2016, 52, 4400504. [Google Scholar] [CrossRef]
- Wu, Y.; Stöhr, J.; Hermsmeier, B.D.; Samant, M.G.; Weller, D. Enhanced Orbital Magnetic Moment on Co Atoms in Co/Pd Multilayers: A Magnetic Circular X-ray Dichroism Study. Phys. Rev. Lett. 1992, 69, 2307–2310. [Google Scholar] [CrossRef]
- Weller, D.; Wu, Y.; Stöhr, J.; Samant, M.G.; Hermsmeier, B.D.; Chappert, C. Orbital Magnetic Moments of Co in Multilayers with Perpendicular Magnetic Anisotropy. Phys. Rev. B 1994, 49, 12888–12896. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.X.; Chshiev, M.; Dieny, B.; Lee, J.H.; Manchon, A.; Shin, K.H. First-Principles Investigation of the Very Large Perpendicular Magnetic Anisotropy at Fe|MgO and Co|MgO Interfaces. Phys. Rev. B Condens. Matter Mater. Phys. 2011, 84, 054401. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, X.G.; Miao, J.; Jiang, Y. Perpendicular Magnetic Anisotropy in Co-Based Full Heusler Alloy Thin Films. SPIN 2015, 5, 1540012. [Google Scholar] [CrossRef]
- Álvarez-Prado, L.M. Control of Dynamics in Weak PMA Magnets. Magnetochemistry 2021, 7, 43. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahendra, A.; Murmu, P.P.; Acharya, S.K.; Islam, A.; Fiedler, H.; Gupta, P.; Granville, S.; Kennedy, J. Shaping Perpendicular Magnetic Anisotropy of Co2MnGa Heusler Alloy Using Ion Irradiation for Magnetic Sensor Applications. Sensors 2023, 23, 4564. https://doi.org/10.3390/s23094564
Mahendra A, Murmu PP, Acharya SK, Islam A, Fiedler H, Gupta P, Granville S, Kennedy J. Shaping Perpendicular Magnetic Anisotropy of Co2MnGa Heusler Alloy Using Ion Irradiation for Magnetic Sensor Applications. Sensors. 2023; 23(9):4564. https://doi.org/10.3390/s23094564
Chicago/Turabian StyleMahendra, Anmol, Peter P. Murmu, Susant Kumar Acharya, Atif Islam, Holger Fiedler, Prasanth Gupta, Simon Granville, and John Kennedy. 2023. "Shaping Perpendicular Magnetic Anisotropy of Co2MnGa Heusler Alloy Using Ion Irradiation for Magnetic Sensor Applications" Sensors 23, no. 9: 4564. https://doi.org/10.3390/s23094564
APA StyleMahendra, A., Murmu, P. P., Acharya, S. K., Islam, A., Fiedler, H., Gupta, P., Granville, S., & Kennedy, J. (2023). Shaping Perpendicular Magnetic Anisotropy of Co2MnGa Heusler Alloy Using Ion Irradiation for Magnetic Sensor Applications. Sensors, 23(9), 4564. https://doi.org/10.3390/s23094564