Fluorescence Super-Resolution Imaging Chip for Gene Silencing Exosomes
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Exosome Extraction
2.3. Gene Silencing
2.4. Immunofluorescence Staining
2.5. Preparation of PDMS Microfluidic Chips
2.6. Cultivation and Transfection of Cells
2.7. Specific Capture and Detection of Exosomes
2.8. DNA-PAINT Imaging and qPAINT Analyzing of the Exosomal PD-L1
2.9. Instruments
3. Results and Discussion
3.1. The Principle of the Inhibition of PD-L1 Expression in Tumor Cells by PD-L1 siRNA
3.1.1. Uptake of siRNA by Tumor Cells
3.1.2. Capture and Detection of Exosomes Secreted by Cells
3.2. Quantitative Analysis of Exosomal PD-L1 by DNA-PAINT
3.2.1. Capture and Detection of Exosomes Secreted by Cells
3.2.2. Quantitative Analysis of PD-L1 on the Surface of Exosomes Using qPAINT
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yi, M.; Zheng, X.; Niu, M.; Zhu, S.; Ge, H.; Wu, K. Combination strategies with PD-1/PD-L1 blockade: Current advances and future directions. Mol. Cancer 2022, 21, 28. [Google Scholar] [CrossRef] [PubMed]
- Kraehenbuehl, L.; Weng, C.H.; Eghbali, S.; Wolchok, J.D.; Merghoub, T. Enhancing immunotherapy in cancer by targeting emerging immunomodulatory pathways. Nat. Rev. Clin. Oncol. 2022, 19, 37–50. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Chen, W.; Xu, Z.P.; Gu, W. PD-L1 Distribution and Perspective for Cancer Immunotherapy—Blockade, Knockdown, or Inhibition. Front. Immunol. 2019, 10, 2022. [Google Scholar] [CrossRef] [PubMed]
- Fehrenbacher, L.; Spira, A.; Ballinger, M.; Kowanetz, M.; Vansteenkiste, J.; Mazieres, J.; Park, K.; Smith, D.; Artal-Cortes, A.; Lewanski, C.; et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): A multicentre, open-label, phase 2 randomised controlled trial. Lancet 2016, 387, 1837–1846. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Chen, S.; Luo, H.; Long, S.; Yang, X.; He, W.; Wu, W.; Wang, S. The negative effect of concomitant medications on immunotherapy in non-small cell lung cancer: An umbrella review. Int. Immunopharmacol. 2023, 124, 110919. [Google Scholar] [CrossRef]
- Van Hoeck, J.; Braeckmans, K.; De Smedt, S.C.; Raemdonck, K. Non-viral siRNA delivery to T cells: Challenges and opportunities in cancer immunotherapy. Biomaterials 2022, 286, 21. [Google Scholar] [CrossRef]
- Saw, P.E.; Song, E.W. siRNA therapeutics: A clinical reality. Sci. China-Life Sci. 2020, 63, 485–500. [Google Scholar] [CrossRef]
- Sheridan, C. PCSK9-gene-silencing, cholesterol-lowering drug impresses. Nat. Biotechnol. 2019, 37, 1385–1387. [Google Scholar] [CrossRef]
- Friedrich, M.; Aigner, A. Therapeutic siRNA: State-of-the-Art and Future Perspectives. Biodrugs 2022, 36, 549–571. [Google Scholar] [CrossRef]
- Gao, W.T.; Wang, X.Y.; Zhou, Y.; Wang, X.Q.; Yu, Y. Autophagy, ferroptosis, pyroptosis, and necroptosis in tumor immunotherapy. Signal Transduct. Target. Ther. 2022, 7, 26. [Google Scholar] [CrossRef]
- Sheta, M.; Taha, E.A.; Lu, Y.Y.; Eguchi, T. Extracellular Vesicles: New Classification and Tumor Immunosuppression. Biology 2023, 12, 110. [Google Scholar] [CrossRef] [PubMed]
- Doyle, L.M.; Wang, M.Z. Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells 2019, 8, 727. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.J.; Iqbal, Z.; Lu, J.P.; Wang, J.H.; Zhang, H.; Chen, X.; Duan, L.; Xia, J. Cell-derived nanovesicle-mediated drug delivery to the brain: Principles and strategies for vesicle engineering. Mol. Ther. 2023, 31, 1207–1224. [Google Scholar] [CrossRef] [PubMed]
- Sala, M.; Ros, M.; Saltel, F. A Complex and Evolutive Character: Two Face Aspects of ECM in Tumor Progression. Front. Oncol. 2020, 10, 25. [Google Scholar] [CrossRef] [PubMed]
- Pirisinu, M.; Pham, T.C.; Zhang, D.X.; Hong, T.N.; Nguyen, L.T.; Le, M.T.N. Extracellular vesicles as natural therapeutic agents and innate drug delivery systems for cancer treatment: Recent advances, current obstacles, and challenges for clinical translation. Semin. Cancer Biol. 2022, 80, 340–355. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Li, Y.X.; Wang, M.Y.; Gu, J.M.; Xu, W.R.; Cai, H.; Fang, X.J.; Zhang, X. Exosomes as a new frontier of cancer liquid biopsy. Mol. Cancer 2022, 21, 33. [Google Scholar] [CrossRef] [PubMed]
- Alzhrani, G.N.; Alanazi, S.T.; Alsharif, S.Y.; Albalawi, A.M.; Alsharif, A.A.; Abdel-Maksoud, M.S.; Elsherbiny, N. Exosomes: Isolation, characterization, and biomedical applications. Cell Biol. Int. 2021, 45, 1807–1831. [Google Scholar] [CrossRef]
- Chen, W.W.; Shao, F.C.; Xianyu, Y.L. Microfluidics-Implemented Biochemical Assays: From the Perspective of Readout. Small 2020, 16, 19. [Google Scholar] [CrossRef]
- Kashefi-Kheyrabadi, L.; Kim, J.; Chakravarty, S.; Park, S.; Gwak, H.; Kim, S.I.; Mohammadniaei, M.; Lee, M.H.; Hyun, K.A.; Jung, H.I. Detachable microfluidic device implemented with electrochemical aptasensor (DeMEA) for sequential analysis of cancerous exosomes. Biosens. Bioelectron. 2020, 169, 9. [Google Scholar] [CrossRef]
- Koester, A.M.; Szczepaniak, M.; Nan, X. Fast and Multiplexed Super Resolution Imaging of Fixed and Immunostained Cells with DNA-PAINT-ERS. Curr. Protoc. 2022, 2, e618. [Google Scholar] [CrossRef]
- Wei, J.X.; Qi, T.S.; Hao, C.H.; Zong, S.F.; Wang, Z.Y.; Cui, Y.P. Optical microscopic and spectroscopic detection of exosomes. Trac-Trends Anal. Chem. 2023, 163, 30. [Google Scholar] [CrossRef]
- Dong, W.J.; Wu, X.J.; Ma, S.B.; Wang, Y.F.; Nalin, A.P.; Zhu, Z.; Zhang, J.Y.; Benson, D.M.; He, K.; Caligiuri, M.A.; et al. The Mechanism of Anti-PD-L1 Antibody Efficacy against PD-L1-Negative Tumors Identifies NK Cells Expressing PD-L1 as a Cytolytic Effector. Cancer Discov. 2019, 9, 1422–1437. [Google Scholar] [CrossRef] [PubMed]
- Ivanusic, D.; Madela, K.; Laue, M.; Denner, J. Three-Dimensional Imaging of CD63 Recruitment at the Virological Synapse: HIV-1. Aids Res. Hum. Retroviruses 2015, 31, 579–580. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.; Kim, M.J.; Sellaththurai, S.; Kim, S.; Lee, S.; Lee, J. Generation of cd63-deficient zebrafish to analyze the role of cd63 in viral infection. Fish. Shellfish. Immunol. 2021, 111, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Green, G.N.; Fang, H.; Lin, R.J.; Newton, G.; Mather, M.; Georgiou, C.D.; Gennis, R.B. The nucleotide-sequence of the cyd locus encoding the 2 subunits of the cytochrome-d terminal oxidase complex of escherichia-coli. J. Biol. Chem. 1988, 263, 13138–13143. [Google Scholar] [CrossRef] [PubMed]
- Mathieu, M.; Névo, N.; Jouve, M.; Valenzuela, J.I.; Maurin, M.; Verweij, F.J.; Palmulli, R.; Lankar, D.; Dingli, F.; Loew, D.; et al. Specificities of exosome versus small ectosome secretion revealed by live intracellular tracking of CD63 and CD9. Nat. Commun. 2021, 12, 18. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Ran, N.; Dong, X.; Zuo, B.; Yang, R.; Zhou, Q.; Moulton, H.M.; Seow, Y.; Yin, H. Anchor peptide captures, targets, and loads exosomes of diverse origins for diagnostics and therapy (vol 10, 444, 2018). Sci. Transl. Med. 2018, 10, eaat0195. [Google Scholar] [CrossRef] [PubMed]
- Zong, S.F.; Liu, Y.; Yang, K.; Yang, Z.Y.; Wang, Z.Y.; Cui, Y.P. Eliminating nonspecific binding sites for highly reliable immunoassay via super-resolution multicolor fluorescence colocalization. Nanoscale 2021, 13, 6624–6634. [Google Scholar] [CrossRef]
- Wei, J.X.; Zhu, K.; Chen, Z.W.; Yang, Z.Y.; Yang, K.; Wang, Z.Y.; Zong, S.F.; Cui, Y.P. Triple-color fluorescence co-localization of PD-L1-overexpressing cancer exosomes. Microchim. Acta 2022, 189, 10. [Google Scholar] [CrossRef]
- Wei, J.X.; Zhang, S.Y.; Yuan, J.N.; Wang, Z.Y.; Zong, S.F.; Cui, Y.P. Nanoscale imaging of tumor cell exosomes by expansion single molecule localization microscopy (ExSMLM). Talanta 2023, 261, 10. [Google Scholar] [CrossRef]
- Jungmann, R.; Avendano, M.S.; Dai, M.J.; Woehrstein, J.B.; Agasti, S.S.; Feiger, Z.; Rodal, A.; Yin, P. Quantitative super-resolution imaging with qPAINT. Nat. Methods 2016, 13, 439–442. [Google Scholar] [CrossRef] [PubMed]
- Thiramanas, R.; Li, M.Y.; Jiang, S.; Landfester, K.; Mailänder, V. Cellular Uptake of siRNA-Loaded Nanocarriers to Knockdown PD-L1: Strategies to Improve T-cell Functions. Cells 2020, 9, 2043. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.W.; Yin, G.Q.; Wei, J.X.; Qi, T.S.; Qian, Z.T.; Wang, Z.Y.; Zong, S.F.; Cui, Y.P. Quantitative analysis of multiple breast cancer biomarkers using DNA-PAINT. Anal. Methods 2022, 14, 3671–3679. [Google Scholar] [CrossRef] [PubMed]
- Aqil, F.; Munagala, R.; Jeyabalan, J.; Agrawal, A.K.; Kyakulaga, A.H.; Wilcher, S.A.; Gupta, R.C. Milk exosomes—Natural nanoparticles for siRNA delivery. Cancer Lett. 2019, 449, 186–195. [Google Scholar] [CrossRef]
- Dahlman, J.E.; Barnes, C.; Khan, O.F.; Thiriot, A.; Jhunjunwala, S.; Shaw, T.E.; Xing, Y.P.; Sager, H.B.; Sahay, G.; Speciner, L.; et al. In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight. Nat. Nanotechnol. 2014, 9, 648–655. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, G.; Qi, T.; Wei, J.; Wang, T.; Wang, Z.; Cui, Y.; Zong, S. Fluorescence Super-Resolution Imaging Chip for Gene Silencing Exosomes. Sensors 2024, 24, 173. https://doi.org/10.3390/s24010173
Yin G, Qi T, Wei J, Wang T, Wang Z, Cui Y, Zong S. Fluorescence Super-Resolution Imaging Chip for Gene Silencing Exosomes. Sensors. 2024; 24(1):173. https://doi.org/10.3390/s24010173
Chicago/Turabian StyleYin, Gaoqiang, Tongsheng Qi, Jinxiu Wei, Tingyu Wang, Zhuyuan Wang, Yiping Cui, and Shenfei Zong. 2024. "Fluorescence Super-Resolution Imaging Chip for Gene Silencing Exosomes" Sensors 24, no. 1: 173. https://doi.org/10.3390/s24010173
APA StyleYin, G., Qi, T., Wei, J., Wang, T., Wang, Z., Cui, Y., & Zong, S. (2024). Fluorescence Super-Resolution Imaging Chip for Gene Silencing Exosomes. Sensors, 24(1), 173. https://doi.org/10.3390/s24010173