A Performance Evaluation of Two Hyperspectral Imaging Systems for the Prediction of Strawberries’ Pomological Traits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Design
2.2. Analytical Methods
2.3. Hyperspectral Image Acquisition
2.4. Data Analysis
2.5. Prediction Models
2.6. Statistical Analysis
3. Results and Discussion
3.1. Exploratory Analysis
3.2. Image Processing and Spectra Analysis
3.3. Prediction of Pomological Traits
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- ElMasry, G.; Sun, D.W. Principles of hyperspectral Imaging Technology. In Hyperspectral Imaging for Food Quality Analysis and Control, 1st ed.; Sun, D.W., Ed.; Elsevier Inc.: London, UK, 2010; pp. 3–43. [Google Scholar]
- Williams, P.J.; Sendin, K. Fundamentals. In Hyperspectral Imaging Analysis and Applications for Food Quality, 1st ed.; Basantia, N.C., Nollet, L.M.L., Kamruzzaman, M., Eds.; Taylor & Francis Group: Abingdon, UK, 2019; pp. 3–19. [Google Scholar]
- Kafkas, E.Y. Comparison of Fruit Quality Characteristics of Berries. J. Mater. Sci. Chem. Eng. 2021, 12, 907–915. [Google Scholar] [CrossRef]
- Lu, R.; Park, B. Introduction. In Hyperspectral Imaging Technology in Food and Agriculture, 1st ed.; Park, B., Lu, R., Eds.; Springer: New York, NY, USA, 2015; pp. 3–6. [Google Scholar]
- Dashti, A.; Müller-Maatsch, J.; Roetgerink, E.; Wijtten, M.; Weesepoel, Y.; Parastar, H.; Yazdanpanah, H. Comparison of a portable Vis-NIR hyperspectral imaging and a snapscan SWIR hyperspectral imaging for evaluation of meat authenticity. Food Chem. 2023, 18, 100667. [Google Scholar] [CrossRef] [PubMed]
- Tallada, J.G.; Bato, P.M.; Shrestha, B.P.; Kobayashi, T.; Nagata, M. Quality evaluation of plant products. In Hyperspectral Imaging Technology in Food and Agriculture, 1st ed.; Park, B., Lu, R., Eds.; Springer: New York, NY, USA, 2015; pp. 240–241. [Google Scholar]
- Lleo, L.; Roger, J.M.; Herrero-Langreo, A.; Diezma-Iglesias, B.; Barreiro, P. Comparison of multispectral indexes extracted from hyperspectral images for the assessment of fruit ripening. J. Food Eng. 2011, 104, 612–620. [Google Scholar] [CrossRef]
- Velez Rivera, N.; Gomez-Sanchis, J.; Chanona-Perez, J.; Jose Carrasco, J.; Millan-Giralolo, M.; Lorente, D.; Cubero, S.; Blasco, J. Early detection of mechanical damage in mango using NIR hyperspectral images and machine learning. Biosyst. Eng. 2014, 122, 91–98. [Google Scholar] [CrossRef]
- Wei, X.; Liu, F.; Qiu, Z.; Shao, Y.; He, Y. Ripeness classification of astringent persimmon using hyperspectral imaging technique. Food Bioprocess Technol. 2014, 7, 1371–1380. [Google Scholar] [CrossRef]
- Zhang, C.; Guo, C.; Liu, F.; Kong, W.; He, Y.; Lou, B. Hyperspectral imaging analysis for ripeness evaluation of strawberry with support vector machine. J. Food Eng. 2016, 179, 11–18. [Google Scholar] [CrossRef]
- Arefi, A.; Sturm, B.; von Gersdoff, G.; Nasirahmadi, A.; Hensel, O. Vis-NIR hyperspectral imaging along with Gaussian process regression to monitor quality attributes of apple slices during drying. LWT-Food Sci. Technol. 2021, 152, 112297. [Google Scholar] [CrossRef]
- Fatchurrahman, D.; Nosrati, M.; Amodio, M.L.; Chaudhry, M.M.A.; de Chiara, M.L.V.; Mastrandrea, L.; Colelli, G. Comparison Performance of Visible-NIR and Near-Infrared Hyperspectral Imaging for Prediction of Nutritional Quality of Goji Berry (Lycium barbarum L.). Foods 2021, 10, 1676. [Google Scholar] [CrossRef]
- Munera, S.; Rodríguez-Ortega, A.; Aleixos, N.; Cubero, S.; Gómez-Sanchis, J.; Blasco, J. Detection of Invisible Damages in ‘Rojo Brillante’ Persimmon Fruit at Different Stages Using Hyperspectral Imaging and Chemometrics. Foods 2021, 10, 2170. [Google Scholar] [CrossRef]
- Ktenioudaki, A.; Esquerre, C.A.; Do Nascimento Nunes, C.M.; O’Donnell, C.P. A decision support tool for shelf-life determination of strawberries using hyperspectral imaging technology. Biosyst. Eng. 2022, 221, 105–117. [Google Scholar] [CrossRef]
- Amoriello, T.; Ciccoritti, R.; Ferrante, P. Prediction of Strawberries’ Quality Parameters Using Artificial Neural Networks. Agronomy 2022, 12, 963. [Google Scholar] [CrossRef]
- Liu, C.; Liu, W.; Lu, X.; Ma, F.; Chen, W.; Yang, J.; Zheng, L. Application of multispectral imaging to determine quality attributes and ripeness stage in strawberry fruit. PLoS ONE 2014, 9, e87818. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.N.; Lee, K.Y.; Jeong, E.J.; Cha, S.W.; Kim, B.G.; Kerr, W.L.; Choi, S.G. Effect of vacuum-grinding on the stability of anthocyanins, ascorbic acid, and oxidative enzyme activity of strawberry. LWT-Food Sci. Technol. 2021, 136, 110304. [Google Scholar] [CrossRef]
- Azarmdel, H.; Jahanbakhshi, A.; Mohtasebi, S.S.; Muñoz, A.R. Evaluation of image processing technique as an expert system in mulberry fruit grading based on ripeness level using artificial neural networks (ANNs) and support vector machine (SVM). Postharvest Biol. Technol. 2020, 166, 111201. [Google Scholar] [CrossRef]
- Naroui Rad, M.R.; Koohkan, S.; Fanaei, H.R.; Pahlavan Rad, M.R. Application of Artificial Neural Networks to predict the final fruit weight and random forest to select important variables in native population of melon (Cucumis melo.L). Sci. Hortic. 2015, 181, 108–112. [Google Scholar] [CrossRef]
- Huang, X.; Wang, H.; Qu, S.; Luo, W.; Gao, Z. Using artificial neural network in predicting the key fruit quality of loquat. Food Sci. Nutr. 2021, 9, 1780–1791. [Google Scholar] [CrossRef] [PubMed]
- Torkashvand, A.M.; Ahmadi, A.; Nikravesh, N.L. Prediction of kiwifruit firmness using fruit mineral nutrient concentration by artificial neural network (ANN) and multiple linear regressions (MLR). J. Integr. Agric. 2017, 16, 1634–1644. [Google Scholar] [CrossRef]
- Goyal, S. Artificial Neural Networks in Fruits: A Comprehensive Review. Int. J. Image Graph. Signal Process. 2014, 5, 53–63. [Google Scholar] [CrossRef]
- Lan, H.; Wang, Z.; Niu, H.; Zhang, H.; Zhang, Y.; Tang, Y.; Liu, Y. A non-destructive testing method for soluble solid content in Korla fragrant pears based on electrical properties and artificial neural network. Food Sci. Nutr. 2020, 8, 5172–5181. [Google Scholar] [CrossRef]
- ElMasry, G.; Wang, N.; ElSayed, A.; Ngadi, M. Hyperspectral imaging for nondestructive determination of some quality attributes for strawberry. J. Food Eng. 2007, 81, 98–107. [Google Scholar] [CrossRef]
- Alajil, O.; Sagar, V.R.; Kaur, C.; Rudra, S.G.; Sharma, R.R.; Kaushik, R.; Verma, M.K.; Tomar, M.; Kumar, M.; Mekhemar, M. Nutritional and phytochemical traits of apricots (Prunus armeniaca L.) for application in nutraceutical and health industry. Foods 2021, 10, 1344. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Mousa, M.A.A.; Al-Qurashi, A.D.; Ibrahim, O.H.M.; Abo-Elyousr, K.A.M.; Rausch, K.; Abdel Aal, A.M.K.; Kamruzzaman, M. Global calibration for non-targeted fraud detection in quinoa flour using portable hyperspectral imaging and chemometrics. Curr. Res. Food Sci. 2023, 6, 100483. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.C.; Park, B. Hyperspectral image processing methods. In Hyperspectral Imaging Technology in Food and Agriculture, 1st ed.; Park, B., Lu, R., Eds.; Springer: New York, NY, USA, 2015; pp. 81–101. [Google Scholar]
- Burger, J.E.; Gowen, A.A. Classification and prediction methods. Hyperspectral image processing methods. In Hyperspectral Imaging Technology in Food and Agriculture, 1st ed.; Park, B., Lu, R., Eds.; Springer: New York, NY, USA, 2015; pp. 107–108. [Google Scholar]
- Saridas, M.A.; Simsek, O.; Donmez, D.; Kacar, Y.A.; Kargi, S.P. Genetic diversity and fruit characteristics of new superior hybrid strawberry (Fragaria × ananassa Duchesne ex Rozier) genotypes. Genet. Resour. Crop Evol. 2021, 68, 741–758. [Google Scholar] [CrossRef]
- Faedi, W.; Baruzzi, G.; Lucchi, P.; Magnani, S.; Sbrighi, P.; Turci, P.; Ambrosio, M.; Ballini, L.; Baroni, G.; Baudino, M.; et al. Monografia Fragola Volume Terzo, 3rd ed.; Imageline: Faenza, Italy, 2015. [Google Scholar]
- Faedi, W.; Baruzzi, G.; Lucchi, P.; Sbrighi, P.; Aliosi, R.; Ballini, L.; Baroni, G.; Baudino, M.; Capriolo, G.; Caracciolo, G.; et al. Monografia Fragola Volume Secondo, 2nd ed.; Imageline: Faenza, Italy, 2009. [Google Scholar]
- Cecatto, A.P.; Calvete, E.O.; Nienow, A.A.; Costa, R.C.D.; Mendonça, H.F.C.; Pazzinato, A.C. Culture systems in the production and quality of strawberry cultivars. Acta Sci. Agron. 2013, 35, 471–478. [Google Scholar] [CrossRef]
- Gerbrandt, E.M.; Bors, R.H.; Meyer, D.; Wilen, R.; Chibbar, R.N. Fruit quality of Japanese, Kuril and Russian blue honeysuckle (Lonicera caerulea L.) germplasm compared to blueberry, raspberry and strawberry. Euphytica 2020, 216, 59. [Google Scholar] [CrossRef]
- Scott, G.; Williams, C.; Wallace, R.W.; Du, X. Exploring plant performance, fruit physicochemical characteristics, volatile profiles, and sensory properties of day-neutral and short-day strawberry cultivars grown in Texas. J. Agric. Food Chem. 2021, 69, 13299–13314. [Google Scholar] [CrossRef] [PubMed]
- Benelli, A.; Cevoli, C.; Fabbri, A.; Ragni, L. Hyperspectral imaging to measure apricot attributes during storage. J. Agric. Eng. 2022, 53, 1311. [Google Scholar] [CrossRef]
- Nicolaï, B.M.; Beullens, K.; Bobelyn, E.; Peirs, A.; Saeys, W.; Theron, K.I.; Lammertyn, J. Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biol. Technol. 2007, 46, 99–118. [Google Scholar] [CrossRef]
- Bureau, S.; Ruiz, D.; Reich, M.; Gouble, B.; Bertrand, D.; Audergon, J.M.; Renard, C.M.G.C. Rapid and non-destructive analysis of apricot fruit quality using FT-near-infrared spectroscopy. Food Chem. 2009, 113, 1323–1328. [Google Scholar] [CrossRef]
- McGlone, V.A.; Kawano, S. Firmness, dry-matter and soluble-solids assessment of postharvest kiwifruit by NIR spectroscopy. Postharvest Biol. Technol. 1998, 13, 131–141. [Google Scholar] [CrossRef]
- Pu, H.; Liu, D.; Wang, L.; Sun, D.W. Soluble solids content and pH prediction and maturity discrimination of Lychee fruits using visible and near infrared hyperspectral imaging. Food Anal. Methods 2016, 9, 235–244. [Google Scholar] [CrossRef]
- Guo, W.; Li, W.; Yang, B.; Zhu, Z.Z.; Liu, D.; Zhu, X. A novel noninvasive and cost-effective handheld detector on soluble solids content of fruits. J. Food Eng. 2019, 257, 1–9. [Google Scholar] [CrossRef]
- Camps, C.; Christen, D. Non-destructive assessment of apricot fruit quality by portable visible-near infrared spectroscopy. LWT-Food Sci. Technol. 2009, 42, 1125–1131. [Google Scholar] [CrossRef]
- Walsh, K.B.; Blasco, J.; Zude-Sasse, M.; Sun, X. Visible-NIR ‘point’ spectroscopy in postharvest fruit and vegetable assessment: The science behind three decades of commercial use. Postharvest Biol. Technol. 2020, 168, 111246. [Google Scholar] [CrossRef]
- Merzlyak, M.N.; Gitelson, A.A.; Chivkunova, O.B.; Rakitin, V.Y. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiol. Plant. 1999, 106, 135–141. [Google Scholar] [CrossRef]
- Toledo-Martín, E.M.; García-García, M.C.; Font, R.; Moreno-Rojas, J.M.; Gómez, P.; Salinas-Navarro, M.; Del Río-Celestino, M. Application of visible/near-infrared reflectance spectroscopy for predicting internal and external quality in pepper. J. Sci. Food Agric. 2016, 96, 3114–3125. [Google Scholar] [CrossRef]
- Tallada, J.G.; Nagata, M.; Kobayashi, T. Non-destructive estimation of firmness of strawberries (Fragaria × ananassa Duch.) using NIR hyperspectral imaging. Environ. Control Biol. 2006, 44, 245–255. [Google Scholar] [CrossRef]
- Sun, M.; Zhang, D.; Liu, L.; Wang, Z. How to predict the sugariness and hardness of melons: A near-infrared hyperspectral imaging method. Food Chem. 2017, 218, 413–421. [Google Scholar] [CrossRef]
- Merzlyak, M.N.; Solovchenko, A. Photostability of pigments in ripening apple fruit: A possible photoprotective role of carotenoids during plant senescence. Plant Sci. 2002, 163, 881–888. [Google Scholar] [CrossRef]
- Munera, S.; Besada, C.; Blasco, J.; Cubero, S.; Salvador, A.; Talens, P.; Aleixos, N. Astringency assessment of persimmon by hyperspectral imaging. Postharvest Biol. Technol. 2017, 125, 35–41. [Google Scholar] [CrossRef]
- Amoriello, T.; Ciccoritti, R.; Paliotta, M.; Carbone, K. Classification and prediction of early-to-late ripening apricot quality using spectroscopic techniques combined with chemometric tools. Sci. Hortic. 2018, 240, 310–317. [Google Scholar] [CrossRef]
- Spadoni, A.; Cameldi, I.; Noferini, M.; Bonora, E.; Costa, G.; Mari, M. An innovative use of DA-meter for peach fruit postharvest management. Sci. Hortic. 2016, 201, 140–144. [Google Scholar] [CrossRef]
- Li, Y.; Shen, F.; Hu, L.; Lang, Z.; Liu, Q.; Cai, F.; Fu, L. A Stare-Down Video-Rate High-Throughput Hyperspectral Imaging System and Its Applications in Biological Sample Sensing. IEEE Sens. J. 2023, 23, 23629–23637. [Google Scholar] [CrossRef]
Cultivar | Pedigree | Origin |
---|---|---|
Sabrina | Sel. 90-020-01 × Sel. 97-19 | Spain |
Calinda | Unknown | Netherlands and Bonares, Andalusia, Spain |
Marimbella | Unknown | Italy |
Sabrosa-Candonga | Sel. 92-38 × Sel. 86-032 | Spain |
Sabrina | Calinda | Marimbella | Sabrosa | |
---|---|---|---|---|
Weight (g) | 57 ± 13 a | 48 ± 14 a | 46 ± 16 a | 22 ± 10 b |
Length (mm) | 71 ± 10 a | 60 ± 5 a | 64 ± 10 ab | 46 ± 9 b |
Width (mm) | 48 ± 5 a | 46 ± 5 a | 45 ± 7 a | 34 ± 5 b |
Thickness (mm) | 34 ± 2 b | 40 ± 3 a | 37 ± 5 ab | 31 ± 4 b |
L* | 33.17 ± 2.47 a | 35.55 ± 3.56 a | 35.28 ± 3.69 a | 39.56 ± 4.03 a |
a* | 27.24 ± 4.31 b | 31.27 ± 3.55 ab | 32.71 ± 3.99 ab | 34.54 ± 3.46 a |
b* | 16.09 ± 5.98 a | 16.15 ± 4.59 a | 19.93 ± 5.89 a | 24.96 ± 5.46 a |
FF (N) | 25 ± 6 a | 24 ± 4 a | 28 ± 8 a | 21 ± 6 a |
TSS (g 100 g−1 FW) | 5.9 ± 0.7 bc | 5.4 ± 0.5 c | 6.8 ± 0.7 ab | 9 ± 2 a |
TA (mEq 100 L−1) | 89 ± 13 b | 76 ± 12 b | 113 ± 15 a | 128 ± 18 a |
DM (g 100 g−1 FW) | 6.8 ± 0.9 a | 7.7 ± 0.4 a | 6.5 ± 0.7 a | 8.8 ± 2.7 a |
Sabrina | Calinda | Marimbella | Sabrosa | |
---|---|---|---|---|
Weight (g) | 27 ± 10 b | 48 ± 14 ab | 58 ± 10 a | 35 ± 9 b |
Length (mm) | 54 ± 6 b | 59 ± 5 b | 72 ± 7 a | 58 ± 8 ab |
Width (mm) | 35 ± 6 b | 46 ± 5 a | 50 ± 4 a | 40 ± 4 b |
Thickness (mm) | 31 ± 4 b | 40 ± 3 a | 37 ± 3 ab | 35 ± 4 ab |
L* | 34.81 ± 4.11 a | 35.47 ± 3.51 a | 36.32 ± 3.80 a | 36.09 ± 4.95 a |
a* | 30.56 ± 4.33 a | 33.28 ± 3.52 a | 34.24 ± 2.45 a | 33.93 ± 2.79 a |
b* | 18.48 ± 6.68 a | 16.57 ± 4.68 a | 18.20 ± 5.37 a | 25.26 ± 7.14 a |
FF (N) | 28 ± 9 a | 24 ± 5 a | 27 ± 7 a | 24 ± 5 a |
TSS (g 100 g−1 FW) | 6.4 ± 0.5 a | 5.4 ± 0.6 a | 6.6 ± 0.8 a | 6.8 ± 1.2 a |
TA (mEq L−1) | 112 ± 11 a | 75 ± 9 b | 103 ± 20 a | 111 ± 16 a |
DM (g 100 g−1 FW) | 6.2 ± 0.8 b | 7.7 ± 0.3 a | 6.7 ± 0.7 b | 6.5 ± 1.2 b |
Neural Network Topologies (Input–Hidden–Output) | Activation Function | Training Set | Test Set | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Hidden Neurons | Output Neurons | R2 | RMSE | MAE | RSE | R2 | RMSE | MAE | RSE | ||
FF | MLP (204–11–1) | Logistic | Identity | 0.682 | 3.577 | 0.014 | 14.443 | 0.808 | 3.493 | 0.484 | 14.234 |
TSS | MLP (204–22–1) | Exp | Tanh | 0.967 | 0.317 | 0.002 | 4.720 | 0.959 | 0.394 | 0.067 | 5.544 |
TA | MLP (204–16–1) | Identity | Identity | 0.973 | 3.922 | 0.019 | 3.959 | 0.877 | 9.306 | 1.003 | 8.438 |
DM | MLP (204–19–1) | Exp | Exp | 0.967 | 0.315 | 0.013 | 4.273 | 0.947 | 0.380 | 0.038 | 4.911 |
Neural Network Topologies (Input–Hidden–Output) | Activation Function | Training Set | Test Set | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Hidden Neurons | Output Neurons | R2 | RMSE | MAE | RSE | R2 | RMSE | MAE | RSE | ||
FF | MLP (224–10–1) | Logistic | Identity | 0.932 | 1.896 | 0.041 | 7.191 | 0.820 | 2.740 | 0.313 | 10.774 |
TSS | MLP (224–11–1) | Logistic | Identity | 0.965 | 0.187 | 0.008 | 2.995 | 0.898 | 0.297 | 0.029 | 4.593 |
TA | MLP (224–19–1) | Logistic | Exp | 0.987 | 2.396 | 0.157 | 2.387 | 0.953 | 4.838 | 1.069 | 4.869 |
DM | MLP (224–11–1) | Logistic | Exp | 0.981 | 0.135 | 0.003 | 1.984 | 0.924 | 0.306 | 0.018 | 4.542 |
FF | TSS | TA | DM | ||||
---|---|---|---|---|---|---|---|
λ (nm) | % | λ (nm) | % | λ (nm) | % | λ (nm) | % |
951 | 100.0 | 820 | 100.0 | 951 | 100.0 | 914 | 100.0 |
516 | 98.1 | 664 | 99.8 | 441 | 98.4 | 939 | 99.8 |
706 | 97.9 | 878 | 99.6 | 566 | 98.1 | 799 | 99.4 |
637 | 97.7 | 616 | 99.1 | 505 | 98.0 | 679 | 99.4 |
905 | 97.7 | 781 | 97.9 | 799 | 97.9 | 551 | 99.3 |
826 | 9.6 | 449 | 97.1 | 670 | 97.6 | 432 | 98.9 |
581 | 97.3 | 619 | 97.0 | 679 | 97.4 | 655 | 98.8 |
670 | 97.2 | 513 | 96.7 | 513 | 97.4 | 528 | 97.9 |
569 | 97.2 | 1000 | 96.6 | 930 | 97.3 | 455 | 97.7 |
784 | 96.8 | 887 | 96.3 | 418 | 97.3 | 634 | 97.7 |
FF | TSS | TA | DM | ||||
---|---|---|---|---|---|---|---|
λ (nm) | % | λ (nm) | % | λ (nm) | % | λ (nm) | % |
1123 | 100.0 | 1379 | 100.0 | 1344 | 100.0 | 1588 | 100.0 |
1120 | 98.4 | 1134 | 100.0 | 1588 | 99.6 | 1263 | 99.9 |
1361 | 98.0 | 1567 | 99.9 | 1210 | 97.9 | 1404 | 99.2 |
1649 | 97.7 | 1291 | 99.7 | 1365 | 97.3 | 981 | 99.1 |
1071 | 97.7 | 1288 | 98.2 | 1186 | 97.3 | 974 | 98.9 |
1270 | 97.3 | 1464 | 97.9 | 1535 | 97.3 | 977 | 98.8 |
991 | 96.9 | 1404 | 97.8 | 1081 | 97.0 | 938 | 98.5 |
1249 | 96.7 | 1295 | 97.6 | 998 | 96.9 | 1471 | 98.5 |
1602 | 96.6 | 1556 | 97.4 | 1266 | 96.5 | 1379 | 98.2 |
1383 | 96.6 | 1228 | 97.4 | 1193 | 96.3 | 1088 | 98.2 |
Neural Network Topologies (Input–Hidden–Output) | Activation Function | Training Set | Test Set | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Hidden Neurons | Output Neurons | R2 | RMSE | MAE | RSE | R2 | RMSE | MAE | RSE | ||
FF | MLP (406–13–1) | Tanh | Logistic | 0.936 | 1.609 | 0.180 | 6.495 | 0.951 | 1.554 | 0.343 | 6.602 |
TSS | MLP (406–17–1) | Exp | Identity | 0.994 | 0.134 | 0.003 | 1.996 | 0.981 | 0.309 | 0.132 | 4.353 |
TA | MLP (406–15–1) | Identity | Logistic | 0.974 | 3.896 | 0.027 | 3.933 | 0.976 | 4.018 | 0.426 | 3.643 |
DM | MLP (406–11–1) | Logistic | Identity | 0.952 | 0.399 | 0.125 | 5.420 | 0.942 | 0.415 | 0.108 | 5.361 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amoriello, T.; Ciorba, R.; Ruggiero, G.; Amoriello, M.; Ciccoritti, R. A Performance Evaluation of Two Hyperspectral Imaging Systems for the Prediction of Strawberries’ Pomological Traits. Sensors 2024, 24, 174. https://doi.org/10.3390/s24010174
Amoriello T, Ciorba R, Ruggiero G, Amoriello M, Ciccoritti R. A Performance Evaluation of Two Hyperspectral Imaging Systems for the Prediction of Strawberries’ Pomological Traits. Sensors. 2024; 24(1):174. https://doi.org/10.3390/s24010174
Chicago/Turabian StyleAmoriello, Tiziana, Roberto Ciorba, Gaia Ruggiero, Monica Amoriello, and Roberto Ciccoritti. 2024. "A Performance Evaluation of Two Hyperspectral Imaging Systems for the Prediction of Strawberries’ Pomological Traits" Sensors 24, no. 1: 174. https://doi.org/10.3390/s24010174
APA StyleAmoriello, T., Ciorba, R., Ruggiero, G., Amoriello, M., & Ciccoritti, R. (2024). A Performance Evaluation of Two Hyperspectral Imaging Systems for the Prediction of Strawberries’ Pomological Traits. Sensors, 24(1), 174. https://doi.org/10.3390/s24010174