STELO: A New Modular Robotic Gait Device for Acquired Brain Injury—Exploring Its Usability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Device
2.3. Intervention Procedure
2.4. Outcome Measures
2.5. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maas, A.I.; Stocchetti, N.; Bullock, R. Moderate and severe traumatic brain injury in adults. Lancet Neurol. 2008, 7, 728–741. [Google Scholar] [CrossRef] [PubMed]
- Dewan, M.C.; Rattani, A.; Gupta, S.; Baticulon, R.E.; Hung, Y.C.; Punchak, M.; Agrawal, A.; Adeleye, A.O.; Shrime, M.G.; Rubiano, A.M.; et al. Estimating the global incidence of traumatic brain injury. J. Neurosurg. 2018, 130, 1080–1097. [Google Scholar] [CrossRef] [PubMed]
- Roozenbeek, B.; Maas, A.I.R.; Menon, D.K. Changing patterns in the epidemiology of traumatic brain injury. Nat. Rev. Neurol. 2013, 9, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Schmid, A.A.; Van Puymbroeck, M.; Altenburger, P.A.; Dierks, T.A.; Miller, K.K.; Damush, T.M.; Williams, L.S. Balance and balance self-efficacy are associated with activity and participation after stroke: A cross-sectional study in people with chronic stroke. Arch. Phys. Med. Rehabil. 2012, 93, 1101–1107. [Google Scholar] [CrossRef] [PubMed]
- Dobkin, B.H. Clinical practice. Rehabilitation after stroke. N. Engl. J. Med. 2005, 352, 1677–1684. [Google Scholar] [CrossRef] [PubMed]
- Ponsford, J.; Sloan, S.; Snow, P. Traumatic Brain Injury: Rehabilitation for Everyday Adaptive Living; Psychology Press: Longdon, UK, 2013; 414p, Available online: https://www.routledge.com/Traumatic-Brain-Injury-Rehabilitation-for-Everyday-Adaptive-Living-2nd/Ponsford-Sloan-Snow/p/book/9781138109858 (accessed on 4 June 2023).
- Ahn, D.H.; Lee, Y.J.; Jeong, J.H.; Kim, Y.R.; Park, J.B. The Effect of Post-Stroke Depression on Rehabilitation Outcome and the Impact of Caregiver Type as a Factor of Post-Stroke Depression. Ann. Rehabil. Med. 2015, 39, 74. [Google Scholar] [CrossRef] [PubMed]
- Hornby, T.G.; Reisman, D.S.; Ward, I.G.; Scheets, P.L.; Miller, A.; Haddad, D.; Fox, E.J.; Fritz, N.E.; Hawkins, K.; Henderson, C.E.; et al. Clinical Practice Guideline to Improve Locomotor Function Following Chronic Stroke, Incomplete Spinal Cord Injury, and Brain Injury. J. Neurol. Phys. Ther. 2020, 44, 49–100. [Google Scholar] [CrossRef]
- Klamroth-Marganska, V.; Blanco, J.; Campen, K.; Curt, A.; Dietz, V.; Ettlin, T.; Felder, M.; Fellinghauer, B.; Guidali, M.; Kollmar, A.; et al. Three-dimensional, task-specific robot therapy of the arm after stroke: A multicentre, parallel-group randomised trial. Lancet Neurol. 2014, 13, 159–166. [Google Scholar] [CrossRef]
- Mehrholz, J.; Pohl, M. Electromechanical-assisted gait training after stroke: A systematic review comparing end-effector and exoskeleton devices. J. Rehabil. Med. 2012, 44, 193–199. [Google Scholar] [CrossRef]
- Cumplido-Trasmonte, C.; Molina-Rueda, F.; Puyuelo-Quintana, G.; Plaza-Flores, A.; Hernández-Melero, M.; Barquín-Santos, E.; Destarac-Eguizabal, M.A.; García-Armada, E. Satisfaction analysis of overground gait exoskeletons in people with neurological pathology: A systematic review. J. Neuroeng. Rehabil. 2023, 20, 47. [Google Scholar] [CrossRef]
- Plaza, A.; Hernandez, M.; Gutierrez, A.; Ramos, J.; Puyuelo, G.; Cumplido, C.; Garces, E.; Destarac, M.A.; Delgado, E.; Garcia, E. Design of a Modular Exoskeleton Based on Distributed Central Pattern Generators. IEEE Syst. J. 2023, 17, 816–827. [Google Scholar] [CrossRef]
- Plaza, A.; Hernandez, M.; Puyuelo, G.; Garces, E.; Garcia, E. Lower-Limb Medical and Rehabilitation Exoskeletons: A Review of the Current Designs. IEEE Rev. Biomed. Eng. 2023, 16, 278–291. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Fernández, A.; Lobo-Prat, J.; Font-Llagunes, J.M. Systematic review on wearable lower-limb exoskeletons for gait training in neuromuscular impairments. J. Neuroeng. Rehabil. 2021, 18, 22. [Google Scholar] [CrossRef] [PubMed]
- Meijneke, C.; Van Oort, G.; Sluiter, V.; Van Asseldonk, E.; Tagliamonte, N.L.; Tamburella, F.; Pisotta, I.; Masciullo, M.; Arquilla, M.; Molinari, M.; et al. Symbitron Exoskeleton: Design, Control, and Evaluation of a Modular Exoskeleton for Incomplete and Complete Spinal Cord Injured Individuals. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Earthy, J.; Jones, B.S.; Bevan, N. ISO Standards for User-Centered Design and the Specification of Usability. In Usablity in Government Systems User Experience Design for Citizens and Public Servants; Elsevier: Amsterdam, The Netherlands, 2012; pp. 267–283. [Google Scholar]
- Chan, A.W.; Tetzlaff, J.M.; Altman, D.G.; Laupacis, A.; Gøtzsche, P.C.; Krleža-Jerić, K.; Hróbjartsson, A.; Mann, H.; Dickersin, K.; Berlin, J.A.; et al. SPIRIT 2013 statement: Defining standard protocol items for clinical trials. Ann. Intern. Med. 2013, 158, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Association, W.M. World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA 2013, 310, 2191–2194. [Google Scholar]
- Holden, M.K.; Gill, K.M.; Magliozzi, M.R.; Nathan, J.; Piehl-Baker, L. Clinical gait assessment in the neurologically impaired. Reliability and meaningfulness. Phys. Ther. 1984, 64, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W.; Smith, M.B. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther 1987, 67, 206–207. [Google Scholar] [CrossRef]
- Cestari, M.; Sanz-Merodio, D.; Arevalo, J.C.; Garcia, E. An adjustable compliant joint for lower-limb exoskeletons. IEEE/ASME Trans. Mechatron. 2015, 20, 889–898. [Google Scholar] [CrossRef]
- Cumplido-Trasmonte, C.; Barquín-Santos, E.; Garcés-Castellote, E.; Gor-García-Fogeda, M.D.; Plaza-Flores, A.; Hernández-Melero, M.; Gutiérrez-Ayala, A.; Cano-de-la-Cuerda, R.; López-Morón, A.L.; García-Armada, E. Safety and Usability of the MAK exoskeleton in patients with stroke. Physiother. Res. Int. 2023. [Google Scholar] [CrossRef]
- Puyuelo-Quintana, G.; Cano-De-La-Cuerda, R.; Plaza-Flores, A.; Garces-Castellote, E.; Sanz-Merodio, D.; Goñi-Arana, A.; Marín-Ojea, J.; García-Armada, E. A new lower limb portable exoskeleton for gait assistance in neurological patients: A proof of concept study. J. Neuroeng. Rehabil. 2020, 17, 60. [Google Scholar] [CrossRef] [PubMed]
- Huskisson, E.C. Measurement of Pain. Lancet 1974, 304, 1127–1131. [Google Scholar] [CrossRef] [PubMed]
- Borg, G. Psychophysical scaling with applications in physical work and the perception of exertion. Scand J. Work Environ. Health 1990, 16 (Suppl. S1), 55–58. [Google Scholar] [CrossRef] [PubMed]
- Alghatani, K.; Ammar, N.; Rezgui, A.; Shaban-Nejad, A. Precision Clinical Medicine through Machine Learning: Using High and Low Quantile Ranges of Vital Signs for Risk Stratification of ICU Patients. IEEE Access 2022, 10, 52418–52430. [Google Scholar] [CrossRef]
- USA. Guidance for Industry and Investigators Safety Reporting Requirements for INDs and BA/BE Studies. 2012. Available online: https://www.fda.gov/files/drugs/published/Safety-Reporting-Requirements-for-INDs-%28Investigational-New-Drug-Applications%29-and-BA-BE-%28Bioavailability-Bioequivalence%29-Studies.pdf (accessed on 4 June 2023).
- Sullivan, J.E.; Crowner, B.E.; Kluding, P.M.; Nichols, D.; Rose, D.K.; Yoshida, R.; Pinto Zipp, G. Outcome measures for individuals with stroke: Process and recommendations from the American Physical Therapy Association neurology section task force. Phys. Ther. 2013, 93, 1383–1396. [Google Scholar] [CrossRef]
- Johansen, K.L.; Stistrup, R.D.; Schjøtt, C.S.; Madsen, J.; Vinther, A. Absolute and Relative Reliability of the Timed ‘Up & Go’ Test and ‘30second Chair-Stand’ Test in Hospitalised Patients with Stroke. PLoS ONE 2016, 11, e0165663. [Google Scholar]
- Daniel, C.R.; Battistella, L.R. Using the six minute walk test to evaluate walking capacity in patients with stroke. Acta Fisiátrica 2014, 21, 195–200. [Google Scholar] [CrossRef]
- Colucci, M.; Tofani, M.; Trioschi, D.; Guarino, D.; Berardi, A.; Galeoto, G. Reliability and validity of the Italian version of Quebec User Evaluation of Satisfaction with Assistive Technology 2.0 (QUEST-IT 2.0) with users of mobility assistive device. Disabil. Rehabil. Assist. Technol. 2019, 16, 251–254. [Google Scholar] [CrossRef]
- Sale, P.; Russo, E.F.; Russo, M.; Masiero, S.; Piccione, F.; Calabrò, R.S.; Filoni, S. Effects on mobility training and de-adaptations in subjects with Spinal Cord Injury due to a Wearable Robot: A preliminary report. BMC Neurol. 2016, 16, 12. [Google Scholar] [CrossRef]
- Pickard, A.S.; Johnson, J.A.; Penn, A.; Lau, F.; Noseworthy, T. Replicability of SF-36 summary scores by the SF-12 in stroke patients. Stroke 1999, 30, 1213–1217. [Google Scholar] [CrossRef]
- Fernández-Vázquez, D.; Cano-De-la-cuerda, R.; Gor-García-fogeda, M.D.; Molina-Rueda, F. Wearable Robotic Gait Training in Persons with Multiple Sclerosis: A Satisfaction Study. Sensors 2021, 21, 4940. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences. 2013. Available online: https://www.taylorfrancis.com/books/mono/10.4324/9780203771587/statistical-power-analysis-behavioral-sciences-jacob-cohen (accessed on 4 June 2023).
- Field, A. Discoversing Statistics using SPSS. 2009. Available online: https://www.worldcat.org/title/262584404 (accessed on 4 June 2023).
- Samuel Schwarzkopf, D.; de Haas, B.; Rees, G. Better ways to improve standards in brain-behavior correlation analysis. Front. Hum. Neurosci. 2012, 6, 200. [Google Scholar] [CrossRef] [PubMed]
- Bryce, T.N.; Dijkers, M.P.; Kozlowski, A.J. Framework for Assessment of the Usability of Lower-Extremity Robotic Exoskeletal Orthoses. Am. J. Phys. Med. Rehabil. 2015, 94, 1000–1014. [Google Scholar] [CrossRef] [PubMed]
- Tefertiller, C.; Hays, K.; Jones, J.; Jayaraman, A.; Hartigan, C.; Bushnik, T.; Forrest, G.F. Initial outcomes from a multicenter study utilizing the indego powered exoskeleton in spinal cord injury. Top. Spinal Cord Inj. Rehabil. 2018, 24, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Kandilakis, C.; Sasso-Lance, E. Exoskeletons for Personal Use After Spinal Cord Injury. Arch. Phys. Med. Rehabil. 2021, 102, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Jyräkoski, T.; Merilampi, S.; Puustinen, J.; Kärki, A. Over-ground robotic lower limb exoskeleton in neurological gait rehabilitation: User experiences and effects on walking ability. Technol. Disabil. 2021, 33, 53–63. Available online: https://researchportal.helsinki.fi/en/publications/over-ground-robotic-lower-limb-exoskeleton-in-neurological-gait-r (accessed on 9 June 2023). [CrossRef]
- Nam, Y.G.; Lee, J.W.; Park, J.W.; Lee, H.J.; Nam, K.Y.; Park, J.H.; Yu, C.S.; Choi, M.R.; Kwon, B.S. Effects of Electromechanical Exoskeleton-Assisted Gait Training on Walking Ability of Stroke Patients: A Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2019, 100, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Awad, L.N.; Esquenazi, A.; Francisco, G.E.; Nolan, K.J.; Jayaraman, A. The ReWalk ReStore™ soft robotic exosuit: A multi-site clinical trial of the safety, reliability, and feasibility of exosuit-augmented post-stroke gait rehabilitation. J. Neuroeng. Rehabil. 2020, 17, 80. [Google Scholar] [CrossRef]
- Gomez-Vargas, D.; Ballen-Moreno, F.; Barria, P.; Aguilar, R.; Azorín, J.M.; Munera, M.; Cifuentes, C.A. The Actuation System of the Ankle Exoskeleton T-FLEX: First Use Experimental Validation in People with Stroke. Brain Sci. 2021, 11, 412. [Google Scholar] [CrossRef]
- Villa-Parra, A.C.; Lima, J.; Delisle-Rodriguez, D.; Frizera-Neto, A.; Bastos, T. Stance control with the active knee orthosis ALLOR for post-stroke patients during walking. Biosyst. Biorobotics 2019, 22, 196–200. [Google Scholar]
- van Dijsseldonk, R.B.; van Nes, I.J.W.; Geurts, A.C.H.; Keijsers, N.L.W. Exoskeleton home and community use in people with complete spinal cord injury. Sci. Rep. 2020, 10, 15600. [Google Scholar] [CrossRef] [PubMed]
- Platz, T.; Gillner, A.; Borgwaldt, N.; Kroll, S.; Roschka, S. Device-Training for Individuals with Thoracic and Lumbar Spinal Cord Injury Using a Powered Exoskeleton for Technically Assisted Mobility: Achievements and User Satisfaction. Biomed. Res. Int. 2016, 2016, 8459018. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.H.; Lee, B.S.; Lee, H.J.; Kim, E.J.; Lee, J.A.; Yang, S.P.; Kim, T.Y.; Pak, H.R.; Kim, H.K.; Kim, H.Y.; et al. Energy Efficiency and Patient Satisfaction of Gait with Knee-Ankle-Foot Orthosis and Robot (ReWalk)-Assisted Gait in Patients with Spinal Cord Injury. Ann. Rehabil. Med.-Arm. 2020, 44, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Wright, M.A.; Herzog, F.; Mas-Vinyals, A.; Carnicero-Carmona, A.; Lobo-Prat, J.; Hensel, C.; Franz, S.; Weidner, N.; Vidal, J.; Opisso, E.; et al. Multicentric investigation on the safety, feasibility and usability of the ABLE lower-limb robotic exoskeleton for individuals with spinal cord injury: A framework towards the standardisation of clinical evaluations. J. Neuroeng. Rehabil. 2023, 20, 45. [Google Scholar] [CrossRef] [PubMed]
- Del-Ama, A.J.; Gil-Agudo, Á.; Bravo-Esteban, E.; Pérez-Nombela, S.; Pons, J.L.; Moreno, J.C. Hybrid therapy of walking with Kinesis overground robot for persons with incomplete spinal cord injury: A feasibility study. Rob. Auton. Syst. 2015, 73, 44–58. [Google Scholar] [CrossRef]
- López-Larraz, E.; Trincado-Alonso, F.; Rajasekaran, V.; Pérez-Nombela, S.; Del-Ama, A.J.; Aranda, J.; Minguez, J.; Gil-Agudo, A.; Montesano, L. Control of an Ambulatory Exoskeleton with a Brain-Machine Interface for Spinal Cord Injury Gait Rehabilitation. Front. Neurosci. 2016, 10, 359. [Google Scholar] [CrossRef]
- Swank, C.; Sikka, S.; Driver, S.; Bennett, M.; Callender, L. Feasibility of integrating robotic exoskeleton gait training in inpatient rehabilitation. Disabil. Rehabil. Assist. Technol. 2020, 15, 409–417. [Google Scholar] [CrossRef]
- Carpio-Rivera, E.; Moncada-Jiménez, J.; Salazar-Rojas, W.; Solera-Herrera, A. Acute Effects of Exercise on Blood Pressure: A Meta-Analytic Investigation. Arq. Bras. Cardiol. 2016, 106, 422. [Google Scholar] [CrossRef]
P | Sex | Age | Cause | Mobility | Months Since ABI | Weight (kg) | Heigth (cm) | TUG | PCS-12 | MCS-12 | FAC |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Male | 50 | Stroke | Cane + AFO | 13.7 | 85 | 180 | 33.1 | 34.0 | 53.4 | 3 |
2 | Female | 39 | Stroke | Wheelchair | 15.5 | 52 | 168 | 22.0 | 27.4 | 56.7 | 2 |
3 | Male | 46 | Stroke | Wheelchair | 24.4 | 94 | 167 | 56.5 | 39.6 | 60.8 | 2 |
4 | Female | 50 | Stroke | Assistive device | 18.7 | 80 | 167 | 114.7 | 34.2 | 36.4 | 3 |
5 | Female | 35 | Stroke | Wheelchair | 18.3 | 51 | 163 | 25.9 | 38.5 | 57.8 | 3 |
6 | Female | 23 | Stroke | Autonomous | 19.0 | 53 | 161 | 14.3 | 41.0 | 56.1 | 4 |
7 | Female | 27 | Tumor | Wheelchair | 18.0 | 50 | 154 | 31.0 | 45.7 | 45.5 | 2 |
8 | Female | 46 | Stroke | Assistive device | 30.4 | 63 | 161 | 15.7 | 36.2 | 38.1 | 2 |
9 | Male | 38 | TBI | Wheelchair | 8.1 | 85 | 180 | 43.6 | 56.6 | 43.5 | 1 |
10 | Male | 48 | TBI | Assistive device | 8.1 | 74 | 169 | 49.0 | 53.6 | 60.8 | 3 |
11 | Male | 31 | TBI | Assistive device | 29.8 | 65 | 173 | 36.3 | 40.9 | 32.0 | 1 |
12 | Male | 58 | Stroke | Wheelchair | 161.3 | 68 | 178 | 44.6 | 40.5 | 56.8 | 3 |
13 | Male | 39 | TBI | Wheelchair | 221.5 | 87 | 186 | 20.3 | 54.4 | 48.0 | 1 |
14 | Male | 59 | Stroke | Wheelchair | 136.0 | 77 | 176 | 42.5 | 30.2 | 62.9 | 3 |
Vital Sign | Start | End |
---|---|---|
Oxygen saturation (%O2) | 96.2 ± 2.3 | 96.6 ± 1.5 |
Heart rate (beats/min) ** | 80.4 ± 16.0 | 87.1 ± 20.5 |
Systolic blood pressure (mmHg) * | 117.2 ± 11.9 | 117.1 ± 11.1 |
Diastolic blood pressure (mmHg) | 75.4 ± 9.8 | 75.8 ± 9.8 |
Session | 10 mwt (s) | 6 mwt (m) |
---|---|---|
1 | 142.4 ± 105.9 | 24.2 ± 13.4 |
2 | 105.4 ± 63.2 | 31.3 ± 13.3 |
3 | 110.3 ± 76.9 | 32.8 ± 18.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cumplido-Trasmonte, C.; Barquín-Santos, E.; Gor-García-Fogeda, M.D.; Plaza-Flores, A.; García-Varela, D.; Ibáñez-Herrán, L.; González-Alted, C.; Díaz-Valles, P.; López-Pascua, C.; Castrillo-Calvillo, A.; et al. STELO: A New Modular Robotic Gait Device for Acquired Brain Injury—Exploring Its Usability. Sensors 2024, 24, 198. https://doi.org/10.3390/s24010198
Cumplido-Trasmonte C, Barquín-Santos E, Gor-García-Fogeda MD, Plaza-Flores A, García-Varela D, Ibáñez-Herrán L, González-Alted C, Díaz-Valles P, López-Pascua C, Castrillo-Calvillo A, et al. STELO: A New Modular Robotic Gait Device for Acquired Brain Injury—Exploring Its Usability. Sensors. 2024; 24(1):198. https://doi.org/10.3390/s24010198
Chicago/Turabian StyleCumplido-Trasmonte, Carlos, Eva Barquín-Santos, María Dolores Gor-García-Fogeda, Alberto Plaza-Flores, David García-Varela, Leticia Ibáñez-Herrán, Carlos González-Alted, Paola Díaz-Valles, Cristina López-Pascua, Arantxa Castrillo-Calvillo, and et al. 2024. "STELO: A New Modular Robotic Gait Device for Acquired Brain Injury—Exploring Its Usability" Sensors 24, no. 1: 198. https://doi.org/10.3390/s24010198
APA StyleCumplido-Trasmonte, C., Barquín-Santos, E., Gor-García-Fogeda, M. D., Plaza-Flores, A., García-Varela, D., Ibáñez-Herrán, L., González-Alted, C., Díaz-Valles, P., López-Pascua, C., Castrillo-Calvillo, A., Molina-Rueda, F., Fernandez, R., & Garcia-Armada, E. (2024). STELO: A New Modular Robotic Gait Device for Acquired Brain Injury—Exploring Its Usability. Sensors, 24(1), 198. https://doi.org/10.3390/s24010198