Benchmarking of Sensor Configurations and Measurement Sites for Out-of-the-Lab Photoplethysmography
Abstract
:1. Introduction
2. Background
2.1. Photoplethysmography
2.2. Measuring Sites
3. Materials and Methods
3.1. Data Collection
- BITalino connected sensors:
- –
- G_low sensor on the left hand’s middle finger (G_lowMidBit);
- –
- G_def sensor on the left hand’s index finger (G_defIndBit).
- ScientISST connected sensors:
- –
- G_high box sensor on the left arm, three fingers above the anterior elbow (G_highArmSci);
- –
- G_high sensor placed above the ulnar styloid process on the left anterior pulse (G_highAntSci).
- BITalino connected sensors:
- –
- G_low sensor on the left hand’s middle finger (G_lowMidBit);
- –
- G_def sensor on the left hand’s index finger (G_defIndBit).
- ScientISST connected sensors:
- –
- G_high box sensor on the left arm, three fingers above the anterior elbow (G_highArmSci);
- –
- G_high sensor placed above the ulnar styloid process on the left posterior pulse (G_highPosSci).
- BITalino connected sensors:
- –
- G_low sensor on the left hand’s middle finger (G_lowMidBit).
- ScientISST connected sensors:
- –
- G_high box sensor on the left leg, above the medial ankle (G_highAnkSci);
- –
- G_def sensor placed on the second toe of the left foot (G_defToeBit).
3.2. Data Processing
3.3. Quality Evaluation
- Pearson Correlation Coefficient (PCC)—PCC is a statistical measure of the degree of linear correlation between two variables calculated as:
- Cosine Similarity (CS)—CS is a measure of similarity between two vectors obtained with:
- Normalized Euclidean Distance (nED)—nED is the normalized distance between two points, computed as:
4. Results
4.1. Saturation
4.2. Signal Quality
4.3. Signal Correlation
4.4. Peak Detection
4.5. Heart Rate Extraction
5. Discussion
6. Conclusions
7. Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PPG | Photoplethysmography |
PE | Photoemitter |
PD | Photodetector |
CCC | Cardiac Cycle Component |
BC | Basal Component |
ADC | Analog-to-Digital Converter |
BMI | Body Mass Index |
SE | Spectral Entropy |
PCC | Pearson Correlation Coefficient |
CS | Cosine Similarity |
nED | Normalized Euclidean Distance |
BPM | Beats per Minute |
mSE | mean Spectral Entropy |
HR | Heart Rate |
References
- Cardiovascular Diseases. Available online: https://www.who.int/health-topics/cardiovascular-diseases (accessed on 17 November 2023).
- Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; et al. Heart Disease and Stroke Statistics—2019 Update: A Report From the American Heart Association. Circulation 2019, 139, e56–e528. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, A.; Changolkar, S.; Patel, M.S. Wearable Devices to Monitor and Reduce the Risk of Cardiovascular Disease: Evidence and Opportunities. Annu. Rev. Med. 2021, 72, 459–471. [Google Scholar] [CrossRef] [PubMed]
- Navalta, J.W.; Ramirez, G.G.; Maxwell, C.; Radzak, K.N.; McGinnis, G.R. Validity and Reliability of Three Commercially Available Smart Sports Bras during Treadmill Walking and Running. Sci. Rep. 2020, 10, 7397. [Google Scholar] [CrossRef] [PubMed]
- Cosoli, G.; Antognoli, L.; Veroli, V.; Scalise, L. Accuracy and Precision of Wearable Devices for Real-Time Monitoring of Swimming Athletes. Sensors 2022, 22, 4726. [Google Scholar] [CrossRef] [PubMed]
- Muggeridge, D.J.; Hickson, K.; Davies, A.V.; Giggins, O.M.; Megson, I.L.; Gorely, T.; Crabtree, D.R. Measurement of Heart Rate Using the Polar OH1 and Fitbit Charge 3 Wearable Devices in Healthy Adults During Light, Moderate, Vigorous, and Sprint-Based Exercise: Validation Study. JMIR MHealth UHealth 2021, 9, e25313. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Abu-Raya, Y.S.; Haick, H. Advanced Materials for Health Monitoring with Skin-Based Wearable Devices. Adv. Healthc. Mater. 2017, 6, 1700024. [Google Scholar] [CrossRef] [PubMed]
- Castaneda, D.; Esparza, A.; Ghamari, M.; Soltanpur, C.; Nazeran, H. A review on wearable photoplethysmography sensors and their potential future applications in health care. Int. J. Biosens. Bioelectron. 2018, 4, 195–202. [Google Scholar] [CrossRef]
- Izmailova, E.S.; Wagner, J.A.; Perakslis, E.D. Wearable Devices in Clinical Trials: Hype and Hypothesis. Clin. Pharmacol. Ther. 2018, 104, 42–52. [Google Scholar] [CrossRef]
- Park, J.; Seok, H.S.; Kim, S.S.; Shin, H. Photoplethysmogram Analysis and Applications: An Integrative Review. Front. Physiol. 2022, 12, 808451. [Google Scholar] [CrossRef]
- Tamura, T. Current progress of photoplethysmography and SPO2 for health monitoring. Biomed. Eng. Lett. 2019, 9, 21–36. [Google Scholar] [CrossRef]
- Narendra Kumar Reddy, G.; Sabarimalai Manikandan, M.; Narasimha Murty, N.V.L. On-Device Integrated PPG Quality Assessment and Sensor Disconnection/Saturation Detection System for IoT Health Monitoring. IEEE Trans. Instrum. Meas. 2020, 69, 6351–6361. [Google Scholar] [CrossRef]
- Uria-Rivas, R.; Rodriguez-Sanchez, M.C.; Santos, O.C.; Vaquero, J.; Boticario, J.G. Impact of Physiological Signals Acquisition in the Emotional Support Provided in Learning Scenarios. Sensors 2019, 19, 4520. [Google Scholar] [CrossRef] [PubMed]
- Papapanagiotou, V.; Diou, C.; Zhou, L.; van den Boer, J.; Mars, M.; Delopoulos, A. A Novel Chewing Detection System Based on PPG, Audio, and Accelerometry. IEEE J. Biomed. Health Inform. 2017, 21, 607–618. [Google Scholar] [CrossRef] [PubMed]
- Fay, T.H.; Hendrik Kloppers, P. The Gibbs’ phenomenon. Int. J. Math. Educ. Sci. Technol. 2001, 32, 73–89. [Google Scholar] [CrossRef]
- Leske, S.; Dalal, S.S. Reducing power line noise in EEG and MEG data via spectrum interpolation. NeuroImage 2019, 189, 763–776. [Google Scholar] [CrossRef] [PubMed]
- Elgendi, M.; Fletcher, R.; Liang, Y.; Howard, N.; Lovell, N.H.; Abbott, D.; Lim, K.; Ward, R. The use of photoplethysmography for assessing hypertension. NPJ Digit. Med. 2019, 2, 60. [Google Scholar] [CrossRef] [PubMed]
- Nijboer, J.A.; Dorlas, J.C.; Mahieu, H.F. Photoelectric plethysmography-some fundamental aspects of the reflection and transmission methods. Clin. Phys. Physiol. Meas. 1981, 2, 205–215. [Google Scholar] [CrossRef]
- Maeda, Y.; Sekine, M.; Tamura, T.; Moriya, A.; Suzuki, T.; Kameyama, K. Comparison of reflected green light and infrared photoplethysmography. In Proceedings of the 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 20–25 August 2008; pp. 2270–2272. [Google Scholar] [CrossRef]
- Maeda, Y.; Sekine, M.; Tamura, T. The advantages of wearable green reflected photoplethysmography. J. Med. Syst. 2011, 35, 829–834. [Google Scholar] [CrossRef]
- Matsumura, K.; Toda, S.; Kato, Y. RGB and Near-Infrared Light Reflectance/Transmittance Photoplethysmography for Measuring Heart Rate During Motion. IEEE Access 2020, 8, 80233–80242. [Google Scholar] [CrossRef]
- Ferreira, A.F.; da Silva, H.P.; Alves, H.; Marques, N.; Fred, A. Feasibility of Electrodermal Activity and Photoplethysmography Data Acquisition at the Foot Using a Sock Form Factor. Sensors 2023, 23, 620. [Google Scholar] [CrossRef]
- Suboh, M.Z.; Jaafar, R.; Nayan, N.A.; Harun, N.H.; Mohamad, M.S.F. Analysis on Four Derivative Waveforms of Photoplethysmogram (PPG) for Fiducial Point Detection. Front. Public Health 2022, 10, 920946. [Google Scholar] [CrossRef] [PubMed]
- Fujita, D.; Suzuki, A. Evaluation of the Possible Use of PPG Waveform Features Measured at Low Sampling Rate. IEEE Access 2019, 7, 58361–58367. [Google Scholar] [CrossRef]
- Scardulla, F.; Cosoli, G.; Spinsante, S.; Poli, A.; Iadarola, G.; Pernice, R.; Busacca, A.; Pasta, S.; Scalise, L.; D’Acquisto, L. Photoplethysmograhic sensors, potential and limitations: Is it time for regulation? A comprehensive review. Measurement 2023, 218, 113150. [Google Scholar] [CrossRef]
- Rhee, S.; Yang, B.H.; Asada, H. Artifact-resistant power-efficient design of finger-ring plethysmographic sensors. IEEE Trans. Biomed. Eng. 2001, 48, 795–805. [Google Scholar] [CrossRef] [PubMed]
- Tamura, T.; Maeda, Y.; Sekine, M.; Yoshida, M. Wearable Photoplethysmographic Sensors—Past and Present. Electronics 2014, 3, 282–302. [Google Scholar] [CrossRef]
- Tur, E.; Tur, M.; Maibach, H.I.; Guy, R.H. Basal Perfusion of the Cutaneous Microcirculation: Measurements as a Function of Anatomic Position. J. Investig. Dermatol. 1983, 81, 442–446. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.; Lee, J. ZigBee Device Access Control and Reliable Data Transmission in ZigBee Based Health Monitoring System. In Proceedings of the 2008 10th International Conference on Advanced Communication Technology, Gangwon, Republic of Korea, 17–20 February 2008; Volume 1, pp. 795–797. [Google Scholar] [CrossRef]
- Lee, Y.; Shin, H.; Jo, J.; Lee, Y.K. Development of a wristwatch-type PPG array sensor module. In Proceedings of the 2011 IEEE International Conference on Consumer Electronics-Berlin (ICCE-Berlin), Berlin, Germany, 6–8 September 2011; pp. 168–171. [Google Scholar] [CrossRef]
- Maguire, M.; Ward, T.E. The Design and Clinical Use of a Reflective Brachial Photoplethysmograph; NUIM/SS/–/2002/04, Signals and Systems Research Group, National University of Ireland: Maynooth, Ireland, 2002. [Google Scholar]
- Ro, D.H.; Moon, H.J.; Kim, J.H.; Lee, K.M.; Kim, S.J.; Lee, D.Y. Photoplethysmography and continuous-wave Doppler ultrasound as a complementary test to ankle-brachial index in detection of stenotic peripheral arterial disease. Angiology 2013, 64, 314–320. [Google Scholar] [CrossRef]
- Perpetuini, D.; Chiarelli, A.M.; Cardone, D.; Rinella, S.; Massimino, S.; Bianco, F.; Bucciarelli, V.; Vinciguerra, V.; Fallica, G.; Perciavalle, V.; et al. Photoplethysmographic Prediction of the Ankle-Brachial Pressure Index through a Machine Learning Approach. Appl. Sci. 2020, 10, 2137. [Google Scholar] [CrossRef]
- Jönsson, B.; Laurent, C.; Skau, T.; Lindberg, L.G. A New Probe for Ankle Systolic Pressure Measurement Using Photoplethysmography (PPG). Ann. Biomed. Eng. 2005, 33, 232–239. [Google Scholar] [CrossRef]
- Rodrigues, L.M.; Rocha, C.; Ferreira, H.; Silva, H. Different lasers reveal different skin microcirculatory flowmotion—Data from the wavelet transform analysis of human hindlimb perfusion. Sci. Rep. 2019, 9, 16951. [Google Scholar] [CrossRef]
- Raposo, A.; da Silva, H.P.; Sanches, J. Camera-based Photoplethysmography (cbPPG) using smartphone rear and frontal cameras: An experimental study. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), virtual, 1–5 November 2021; pp. 7091–7094. [Google Scholar] [CrossRef]
- Kutt, K.; Drążyk, D.; Bobek, S.; Nalepa, G.J. Personality-Based Affective Adaptation Methods for Intelligent Systems. Sensors 2021, 21, 163. [Google Scholar] [CrossRef] [PubMed]
- Valente, J.; Godinho, L.; Pintado, C.; Baptista, C.; Kozlova, V.; Marques, L.; Fred, A.; Plácido da Silva, H. Neuroorganoleptics: Organoleptic Testing Based on Psychophysiological Sensing. Foods 2021, 10, 1974. [Google Scholar] [CrossRef] [PubMed]
- Swoboda, D.; Boasen, J.; Léger, P.M.; Pourchon, R.; Sénécal, S. Comparing the Effectiveness of Speech and Physiological Features in Explaining Emotional Responses during Voice User Interface Interactions. Appl. Sci. 2022, 12, 1269. [Google Scholar] [CrossRef]
- Krokidis, M.G.; Dimitrakopoulos, G.N.; Vrahatis, A.G.; Tzouvelekis, C.; Drakoulis, D.; Papavassileiou, F.; Exarchos, T.P.; Vlamos, P. A Sensor-Based Perspective in Early-Stage Parkinson’s Disease: Current State and the Need for Machine Learning Processes. Sensors 2022, 22, 409. [Google Scholar] [CrossRef] [PubMed]
- ScientISST SENSE. Available online: https://www.scientisst.com/sense (accessed on 15 November 2023).
- Bolaños, T.A.; da Silva, H.P. Towards Opportunistic Electrocardiography (ECG) Sensing in Mobile Devices. In Proceedings of the 2023 IEEE 7th Portuguese Meeting on Bioengineering (ENBENG), Porto, Portugal, 22–23 June 2023; pp. 163–166. [Google Scholar] [CrossRef]
- Pereira, L.; Plácido da Silva, H. A Novel Smart Chair System for Posture Classification and Invisible ECG Monitoring. Sensors 2023, 23, 719. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, S.M.; Silva, H.P.d. A Novel Approach to Simultaneous Phonocardiography and Electrocardiography During Auscultation. IEEE Access 2023, 11, 78224–78236. [Google Scholar] [CrossRef]
- Areias Saraiva, J.; Abreu, M.; Carmo, A.S.; Plácido da Silva, H.; Fred, A. ScientISST MOVE: Annotated Wearable Multimodal Biosignals recorded during Everyday Life Activities in Naturalistic Environments. Circulation 2023, 101, e215–e220. [Google Scholar] [CrossRef]
- Heartbeats in Your Project, Lickety-Split ♥. Available online: https://pulsesensor.com/ (accessed on 13 November 2023).
- Gitman, Y.; Murphy, J. PulseSensor BLE Heart Rate Monitor with nRF52. In Heartbeat Sensor Projects with PulseSensor: Prototyping Devices with Biofeedback; Gitman, Y., Murphy, J., Eds.; Apress: Berkeley, CA, USA, 2023; pp. 241–254. [Google Scholar] [CrossRef]
- Wohingati, G.W.; Subari, A. Alat Pengukur Detak Jantung Menggunakan Pulsesensor Berbasis Arduino Uno R3 Yang Diintegrasikan Dengan Bluetooth. Gema Teknol. 2013, 17. [Google Scholar] [CrossRef]
- Ve Gokhan Ertas, I.H. Experimental analysis of optical sensors in detecting heart beat. In Proceedings of the 2017 Medical Technologies National Congress (TIPTEKNO), Trabzon, Turkey, 12–14 October 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Jamme, C.; Persand, K.D.; Soto-Romero, G.; Vigué, A. S3Bike: An Electrically Assisted Cycle Monitored in Heart Beat to Help People with Heart Problem—Tests and Choice of the Best Heart Rate Sensor. In Proceedings of the 5th International Congress on Sport Sciences Research and Technology Support, Funchal, Madeira, Portugal, 30–31 October 2017; pp. 107–110. [Google Scholar] [CrossRef]
- Devis, Y.; Irawan, Y.; Junadhi; Zoromi, F.; Herianto; Amartha, M.R. Monitoring System of Heart Rate, Temperature and Infusion in Patients Based on Microcontroller (Arduino Uno). J. Phys. Conf. Ser. 2021, 1845, 012069. [Google Scholar] [CrossRef]
- Wang, Q. A Design and Research of Sports Smart Wearable Devices. In Proceedings of the 2020 International Conference on Artificial Intelligence and Electromechanical Automation (AIEA), Tianjin, China, 26–28 June 2020; pp. 91–94. [Google Scholar] [CrossRef]
- Ma, H.; Fan, X.J.; Yin, X.Y. The Design of Wearable Sub-Health Monitoring System. Appl. Mech. Mater. 2015, 727–728, 670–674. [Google Scholar] [CrossRef]
- Morales, J.M.; Díaz-Piedra, C.; Di Stasi, L.L.; Martínez-Cañada, P.; Romero, S. Low-cost Remote Monitoring of Biomedical Signals. In Lecture Notes in Computer Science, Proceedings of the Artificial Computation in Biology and Medicine, Elche, Spain, 1–5 June 2015; Ferrández Vicente, J.M., Álvarez Sánchez, J.R., de la Paz López, F., Toledo-Moreo, F.J., Adeli, H., Eds.; Springer: Cham, Switzerland, 2015; pp. 288–295. [Google Scholar] [CrossRef]
- He, X.; Goubran, R.A.; Liu, X.P. Wrist pulse measurement and analysis using Eulerian video magnification. In Proceedings of the 2016 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), Las Vegas, NV, USA, 24–27 February 2016; pp. 41–44. [Google Scholar] [CrossRef]
- Tuning Pulse Sensor. Available online: https://www.afonso-ferreira.net/projects/tuning-pulse-sensor (accessed on 12 November 2023).
- Rezek, I.; Roberts, S. Stochastic complexity measures for physiological signal analysis. IEEE Trans. Biomed. Eng. 1998, 45, 1186–1191. [Google Scholar] [CrossRef] [PubMed]
- Böttcher, S.; Vieluf, S.; Bruno, E.; Joseph, B.; Epitashvili, N.; Biondi, A.; Zabler, N.; Glasstetter, M.; Dümpelmann, M.; Van Laerhoven, K.; et al. Data quality evaluation in wearable monitoring. Sci. Rep. 2022, 12, 21412. [Google Scholar] [CrossRef] [PubMed]
- Nasseri, M.; Nurse, E.; Glasstetter, M.; Böttcher, S.; Gregg, N.M.; Laks Nandakumar, A.; Joseph, B.; Pal Attia, T.; Viana, P.F.; Bruno, E.; et al. Signal quality and patient experience with wearable devices for epilepsy management. Epilepsia 2020, 61, S25–S35. [Google Scholar] [CrossRef] [PubMed]
- Abreu, M.; Carmo, A.S.; Peralta, A.R.; Sá, F.; Plácido Da Silva, H.; Bentes, C.; Fred, A.L. PreEpiSeizures: Description and outcomes of physiological data acquisition using wearable devices during video-EEG monitoring in people with epilepsy. Front. Physiol. 2023, 14, 1248899. [Google Scholar] [CrossRef] [PubMed]
- Carreiras, C.; Alves, A.P.; Lourenço, A.; Canento, F.; Silva, H.; Fred, A. BioSPPy: Biosignal Processing in Python. 2015. Available online: https://github.com/PIA-Group/BioSPPy/ (accessed on 12 November 2023).
- Elgendi, M.; Norton, I.; Brearley, M.; Abbott, D.; Schuurmans, D. Systolic Peak Detection in Acceleration Photoplethysmograms Measured from Emergency Responders in Tropical Conditions. PLoS ONE 2013, 8, e76585. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.; Salvador, G.; Bota, P.; Fred, A.; Plácido da Silva, H. Impact of sampling rate and interpolation on photoplethysmography and electrodermal activity signals’ waveform morphology and feature extraction. Neural Comput. Appl. 2023, 35, 5661–5677. [Google Scholar] [CrossRef]
- Profillidis, V.A.; Botzoris, G.N. (Eds.) Chapter 5—Statistical methods for transport demand modeling. In Modeling of Transport Demand; Elsevier: Amsterdam, The Netherlands, 2019; pp. 163–224. [Google Scholar] [CrossRef]
- Event Annotator for Biosignals. Available online: https://www.afonso-ferreira.net/projects/event-annotator-for-biosignals (accessed on 12 November 2023).
- Shcherbina, A.; Mattsson, C.M.; Waggott, D.; Salisbury, H.; Christle, J.W.; Hastie, T.; Wheeler, M.T.; Ashley, E.A. Accuracy in Wrist-Worn, Sensor-Based Measurements of Heart Rate and Energy Expenditure in a Diverse Cohort. J. Pers. Med. 2017, 7, 3. [Google Scholar] [CrossRef]
- Poincaré Graph. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiB2dG3gr-CAxUqr5UCHUKyDK8QFnoECBQQAQ&url=https%3A%2F%2Ffiles.btlnet.com%2Fproduct-document%2F9792e3d5-3dbf-45d8-9e84-5c964a6a8602%2FBTL-Cardiopoint_WP_Poincare-graph_EN400_9792e3d5-3dbf-45d8-9e84-5c964a6a8602_original.pdf&usg=AOvVaw00BT8mAQ9CaV6QycMUAjbV&opi=89978449 (accessed on 12 November 2023).
- Pradhan, N.; Rajan, S.; Adler, A. Evaluation of the signal quality of wrist-based photoplethysmography. Physiol. Meas. 2019, 40, 065008. [Google Scholar] [CrossRef]
- Jang, D.G.; Kwon, U.K.; Yoon, S.K.; Park, C.; Ku, Y.; Noh, S.W.; Kim, Y.H. A Simple and Robust Method for Determining the Quality of Cardiovascular Signals Using the Signal Similarity. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 478–481. [Google Scholar] [CrossRef]
- Moscato, S.; Lo Giudice, S.; Massaro, G.; Chiari, L. Wrist Photoplethysmography Signal Quality Assessment for Reliable Heart Rate Estimate and Morphological Analysis. Sensors 2022, 22, 5831. [Google Scholar] [CrossRef]
- Pereira, T.; Gadhoumi, K.; Ma, M.; Liu, X.; Xiao, R.; Colorado, R.A.; Keenan, K.J.; Meisel, K.; Hu, X. A Supervised Approach to Robust Photoplethysmography Quality Assessment. IEEE J. Biomed. Health Inform. 2020, 24, 649–657. [Google Scholar] [CrossRef]
- Wallen, M.P.; Gomersall, S.R.; Keating, S.E.; Wisløff, U.; Coombes, J.S. Accuracy of Heart Rate Watches: Implications for Weight Management. PLoS ONE 2016, 11, e0154420. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.F.; Wang, T.Y.; Kuo, P.H.; Wang, H.L.; Li, S.Z.; Lin, C.M.; Chan, S.C.; Liu, T.Y.; Lo, Y.C.; Lin, S.H.; et al. Upper-Arm Photoplethysmographic Sensor with One-Time Calibration for Long-Term Blood Pressure Monitoring. Biosensors 2023, 13, 321. [Google Scholar] [CrossRef] [PubMed]
- Jarchi, D.; Casson, A.J. Estimation of heart rate from foot worn photoplethysmography sensors during fast bike exercise. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016. [Google Scholar] [CrossRef]
- Maeda, Y.; Sekine, M.; Tamura, T. Relationship Between Measurement Site and Motion Artifacts in Wearable Reflected Photoplethysmography. J. Med. Syst. 2011, 35, 969–976. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.M. New Aging Index Using Signal Features of Both Photoplethysmograms and Acceleration Plethysmograms. Healthc. Inform. Res. 2017, 23, 53–59. [Google Scholar] [CrossRef]
- Allen, J.; Murray, A. Age-related changes in peripheral pulse timing characteristics at the ears, fingers and toes. J. Hum. Hypertens. 2002, 16, 711–717. [Google Scholar] [CrossRef]
- Park, Y.J.; Lee, J.M.; Kwon, S.H. Association of the second derivative of photoplethysmogram with age, hemodynamic, autonomic, adiposity, and emotional factors. Medicine 2019, 98, e18091. [Google Scholar] [CrossRef]
Abreviation | R6 (M) | Sensor Type | Anatomical Site | Device | Sample Range |
---|---|---|---|---|---|
G_lowMidBit | 1 | G_low | Left Hand’s Middle Finger | BITalino | [0–1023] |
G_defIndBit | 3.3 | G_def | Left Hand’s Index Finger | BITalino | [0–1023] |
G_highArmSci | 10 | G_high | Left Anterior Arm | ScientISST | [0–8,388,607] |
G_highPosSci | 10 | G_high | Left Posterior Wrist | ScientISST | [0–8,388,607] |
G_highAntSci | 10 | G_high | Left Anterior Wrist | ScientISST | [0–8,388,607] |
G_defToeSci | 3.3 | G_def | Left Foot’s Second Toe | ScientISST | [0–8,388,607] |
G_highAnkSci | 10 | G_high | Left Medial Ankle | ScientISST | [0–8,388,607] |
Parameter | All Subjects, n = 28 |
---|---|
Age | [18–29] (18 to 59) |
Height, m | 1.69 (1.6 to 1.86) |
Weight, kg | 64.5 (45 to 100) |
Body Mass Index (BMI), kg/m | 22.19 (15.94 to 30.86) |
Sensor Type | Min | Max | Median | Mean | N° of Samples |
---|---|---|---|---|---|
G_defBit | 901 | 977 | 975 | 974 ± 3 | 14,396 |
G_lowBit | 901 | 978 | 976 | 975 ± 8 | 13,939 |
G_defSci | 8,001,720 | 8,298,304 | 8,061,480 | 8,061,040 ± 7681 | 13,624 |
G_highSci | 8,001,900 | 8,272,080 | 8,208,360 | 8,205,810 ± 11,772 | 11,556 |
Sensor | Mean Saturation (%) | N° of Signals |
---|---|---|
G_lowMidBit | 0.479 ± 1.294 | 68 |
G_defIndBit | 18.554 ± 11.871 | 43 |
G_highArmSci | 0.474 ± 1.210 | 43 |
G_highPosSci | <0.001 ± 0 | 22 |
G_highAntSci | <0.001 ± 0 | 21 |
G_defToeSci | <0.001 ± 0 | 20 |
G_highAnkSci | 0.100 ± 0.331 | 20 |
Sensor | Mean SE | Mean SE without Saturation | N° of Signals |
---|---|---|---|
G_lowMidBit | 0.629 ± 0.061 | 0.629 ± 0.061 | 43 |
G_defIndBit | 0.572 ± 0.077 | 0.605 ± 0.056 | 43 |
G_highArmSci | 0.643 ± 0.061 | 0.644 ± 0.061 | 43 |
G_highPosSci | 0.639 ± 0.057 | 0.639 ± 0.057 | 22 |
G_highAntSci | 0.683 ± 0.055 | 0.683 ± 0.055 | 21 |
G_defToeSci | 0.674 ± 0.628 | 0.674 ± 0.063 | 20 |
G_highAnkSci | 0.747 ± 0.066 | 0.746 ± 0.065 | 20 |
Sensor | Mean SE | Mean SE without Saturation | N° of Signals |
---|---|---|---|
G_lowMidBit | 0.658 ± 0.047 | 0.657 ± 0.046 | 43 |
G_defIndBit | 0.626 ± 0.086 | 0.669 ± 0.100 | 43 |
G_highArmSci | 0.637 ± 0.191 | 0.634 ± 0.190 | 43 |
G_highPosSci | 0.702 ± 0.138 | 0.702 ± 0.138 | 22 |
G_highAntSci | 0.733 ± 0.216 | 0.733 ± 0.216 | 21 |
Sensor Pair | PCC | CS | nED | N° of Signals |
---|---|---|---|---|
G_lowMidBit/ G_defIndBit | 0.835 ± 0.094 | 0.828 ± 0.088 | 5.438 ± 2.182 | 43 |
G_lowMidBit/ G_highArmSci | 0.916 ± 0.055 | 0.914 ± 0.056 | 3.892 ± 1.269 | 43 |
G_lowMidBit/ G_highAntSci | 0.911 ± 0.071 | 0.909 ± 0.071 | 3.810 ± 1.670 | 21 |
G_lowMidBit/ G_highPosSci | 0.928 ± 0.051 | 0.927 ± 0.052 | 3.614 ± 1.367 | 22 |
G_lowMidBit/ G_defToeSci | 0.879 ± 0.079 | 0.875 ± 0.080 | 4.892 ± 1.823 | 20 |
G_defToeSci/ G_highAnkSci | 0.808 ± 0.131 | 0.803 ± 0.130 | 5.578 ± 2.331 | 20 |
Sensor Pair | PCC | CS | nED | N° of Signals |
---|---|---|---|---|
G_lowMidBit/ G_defIndBit | 0.840 ± 0.120 | 0.832 ± 0.116 | 5.185 ± 2.457 | 43 |
G_lowMidBit/ G_highArmSci | 0.879 ± 0.095 | 0.875 ± 0.095 | 4.635 ± 2.113 | 43 |
G_lowMidBit/ G_highAntSci | 0.807 ± 0.155 | 0.799 ± 0.157 | 5.983 ± 3.039 | 21 |
G_lowMidBit/ G_highPosSci | 0.860 ± 0.115 | 0.855 ± 0.116 | 5.034 ± 2.274 | 22 |
Sensor | Sensitivity | Precision | N° of Signals |
---|---|---|---|
G_lowMidBit | 0.99 ± 0.01 | 0.99 ± 0.01 | 43 |
G_defIndBit | 0.72 ± 0.25 | 0.71 ± 0.26 | 43 |
G_highArmSci | 0.89 ± 0.22 | 0.89 ± 0.22 | 43 |
G_highPosSci | 0.95 ± 0.11 | 0.94 ± 0.12 | 22 |
G_highAntSci | 0.84 ± 0.26 | 0.84 ± 0.26 | 21 |
G_defToeSci | 0.81 ± 0.30 | 0.78 ± 0.30 | 20 |
G_highAnkSci | 0.74 ± 0.19 | 0.72 ± 0.20 | 20 |
Sensor | Sensitivity | Precision | N° of Signals |
---|---|---|---|
G_lowMidBit | 0.019 ± 0.019 | 0.020 ± 0.020 | 43 |
G_defIndBit | 0.017 ± 0.017 | 0.017 ± 0.017 | 43 |
G_highArmSci | 0.018 ± 0.018 | 0.018 ± 0.018 | 43 |
G_highPosSci | 0.020 ± 0.020 | 0.020 ± 0.021 | 22 |
G_highAntSci | 0.018 ± 0.016 | 0.018 ± 0.016 | 21 |
Sensor | Mean HR Difference (BPM) | Percent Error (%) | N° of Signals |
---|---|---|---|
G_lowMidBit | 0.241 ± 0.557 | 0.361 ± 0.848 | 43 |
G_defIndBit | 3.005 ± 6.771 | 4.620 ± 11.180 | 43 |
G_highArmSci | 1.268 ± 3.978 | 1.848 ± 6.017 | 43 |
G_highPosSci | 1.183 ± 2.993 | 1.832 ± 5.039 | 22 |
G_highAntSci | 1.892 ± 1.968 | 2.669 ± 3.007 | 21 |
G_defToeSci | 1.491 ± 3.019 | 2.138 ± 4.441 | 20 |
G_highAnkSci | 7.076 ± 9.258 | 10.820 ± 15.894 | 20 |
Signal | Mean HR Difference (BPM) | Percent Error (%) | N° of Signals |
---|---|---|---|
G_lowMidBit | 0.811 ± 1.325 | 1.067 ± 1.692 | 43 |
G_defIndBit | 1.938 ± 2.793 | 2.640 ± 4.134 | 43 |
G_highArmSci | 2.426 ± 4.293 | 3.418 ± 6.631 | 43 |
G_highPosSci | 4.575 ± 5.017 | 6.279 ± 7.212 | 22 |
G_highAntSci | 7.200 ± 6.193 | 9.421 ± 8.396 | 21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Supelnic, M.N.; Ferreira, A.F.; Bota, P.J.; Brás-Rosário, L.; Plácido da Silva, H. Benchmarking of Sensor Configurations and Measurement Sites for Out-of-the-Lab Photoplethysmography. Sensors 2024, 24, 214. https://doi.org/10.3390/s24010214
Supelnic MN, Ferreira AF, Bota PJ, Brás-Rosário L, Plácido da Silva H. Benchmarking of Sensor Configurations and Measurement Sites for Out-of-the-Lab Photoplethysmography. Sensors. 2024; 24(1):214. https://doi.org/10.3390/s24010214
Chicago/Turabian StyleSupelnic, Max Nobre, Afonso Fortes Ferreira, Patrícia Justo Bota, Luís Brás-Rosário, and Hugo Plácido da Silva. 2024. "Benchmarking of Sensor Configurations and Measurement Sites for Out-of-the-Lab Photoplethysmography" Sensors 24, no. 1: 214. https://doi.org/10.3390/s24010214
APA StyleSupelnic, M. N., Ferreira, A. F., Bota, P. J., Brás-Rosário, L., & Plácido da Silva, H. (2024). Benchmarking of Sensor Configurations and Measurement Sites for Out-of-the-Lab Photoplethysmography. Sensors, 24(1), 214. https://doi.org/10.3390/s24010214