Estimation of Biochemical Pigment Content in Poplar Leaves Using Proximal Multispectral Imaging and Regression Modeling Combined with Feature Selection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition
2.1.1. Sample Collection and Image Acquisition
2.1.2. Leaf Biochemical Measurements
2.2. Image Pre-Processing
2.3. Variable Selection
2.3.1. Forward Filtering Algorithm with Correlation Analysis (CORR)
2.3.2. Sequential Forward Selection Algorithm (SFS)
2.3.3. Recursive Feature Elimination Algorithm (RFE)
2.4. Prediction Model
2.4.1. Partial Least Square Regression (PLSR)
2.4.2. Support Vector Machine Regression (SVR)
2.5. Model Validation
3. Results
3.1. Statistical Analysis
3.2. Input Variable Selection
3.3. Model Comparation
3.4. Leaf Parameter Mapping
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Croft, H.; Chen, J.M. Leaf Pigment Content. In Comprehensive Remote Sensing; Elsevier: Amsterdam, The Netherlands, 2018; pp. 117–142. [Google Scholar]
- Mohd Asaari, M.S.; Mishra, P.; Mertens, S.; Dhondt, S.; Inzé, D.; Wuyts, N.; Scheunders, P. Close-Range Hyperspectral Image Analysis for the Early Detection of Stress Responses in Individual Plants in a High-Throughput Phenotyping Platform. ISPRS-J. Photogramm. Remote Sens. 2018, 138, 121–138. [Google Scholar] [CrossRef]
- Main, R.; Cho, M.A.; Mathieu, R.; O’Kennedy, M.M.; Ramoelo, A.; Koch, S. An Investigation into Robust Spectral Indices for Leaf Chlorophyll Estimation. ISPRS-J. Photogramm. Remote Sens. 2011, 66, 751–761. [Google Scholar] [CrossRef]
- Carter, G.A. Ratios of Leaf Reflectances in Narrow Wavebands as Indicators of Plant Stress. Int. J. Remote Sens. 1994, 15, 697–703. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Zur, Y.; Chivkunova, O.B.; Merzlyak, M.N. Assessing Carotenoid Content in Plant Leaves with Reflectance Spectroscopy. Photochem. Photobiol. 2007, 75, 272–281. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. The Stress Concept in Plants: An Introduction. Ann. N. Y. Acad. Sci. 1998, 851, 187–198. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Peng, Y.; Arkebauer, T.J.; Schepers, J. Relationships between Gross Primary Production, Green LAI, and Canopy Chlorophyll Content in Maize: Implications for Remote Sensing of Primary Production. Remote Sens. Environ. 2014, 144, 65–72. [Google Scholar] [CrossRef]
- Boothroyd-Roberts, K.; Gagnon, D.; Truax, B. Can Hybrid Poplar Plantations Accelerate the Restoration of Forest Understory Attributes on Abandoned Fields? For. Ecol. Manag. 2013, 287, 77–89. [Google Scholar] [CrossRef]
- Bouchard, H.; Guittonny, M.; Brais, S. Early Recruitment of Boreal Forest Trees in Hybrid Poplar Plantations of Different Densities on Mine Waste Rock Slopes. For. Ecol. Manag. 2018, 429, 520–533. [Google Scholar] [CrossRef]
- Xi, B.; Clothier, B.; Coleman, M.; Duan, J.; Hu, W.; Li, D.; Di, N.; Liu, Y.; Fu, J.; Li, J.; et al. Irrigation Management in Poplar (Populus spp.) Plantations: A Review. For. Ecol. Manag. 2021, 494, 119330. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Mariotto, I.; Gumma, M.K.; Middleton, E.M.; Landis, D.R.; Huemmrich, K.F. Selection of Hyperspectral Narrowbands (HNBs) and Composition of Hyperspectral Twoband Vegetation Indices (HVIs) for Biophysical Characterization and Discrimination of Crop Types Using Field Reflectance and Hyperion/EO-1 Data. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2013, 6, 427–439. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, X. Model for Estimation of Total Nitrogen Content in Sandalwood Leaves Based on Nonlinear Mixed Effects and Dummy Variables Using Multispectral Images. Chemom. Intell. Lab. Syst. 2019, 195, 103874. [Google Scholar] [CrossRef]
- Verrelst, J.; Malenovský, Z.; Van der Tol, C.; Camps-Valls, G.; Gastellu-Etchegorry, J.-P.; Lewis, P.; North, P.; Moreno, J. Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods. Surv. Geophys. 2019, 40, 589–629. [Google Scholar] [CrossRef]
- Wang, J.; Tian, T.; Wang, H.; Cui, J.; Zhu, Y.; Zhang, W.; Tong, X.; Zhou, T.; Yang, Z.; Sun, J. Estimating Cotton Leaf Nitrogen by Combining the Bands Sensitive to Nitrogen Concentration and Oxidase Activities Using Hyperspectral Imaging. Comput. Electron. Agric. 2021, 189, 106390. [Google Scholar] [CrossRef]
- Yang, Z.; Tian, J.; Feng, K.; Gong, X.; Liu, J. Application of a Hyperspectral Imaging System to Quantify Leaf-Scale Chlorophyll, Nitrogen and Chlorophyll Fluorescence Parameters in Grapevine. Plant Physiol. Biochem. 2021, 166, 723–737. [Google Scholar] [CrossRef]
- Jay, S.; Bendoula, R.; Hadoux, X.; Féret, J.-B.; Gorretta, N. A Physically-Based Model for Retrieving Foliar Biochemistry and Leaf Orientation Using Close-Range Imaging Spectroscopy. Remote Sens. Environ. 2016, 177, 220–236. [Google Scholar] [CrossRef]
- Lu, B.; He, Y.; Dao, P.D. Comparing the Performance of Multispectral and Hyperspectral Images for Estimating Vegetation Properties. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2019, 12, 1784–1797. [Google Scholar] [CrossRef]
- Orlando, S.; Minacapilli, M.; Sarno, M.; Carrubba, A.; Motisi, A. A Low-Cost Multispectral Imaging System for the Characterisation of Soil and Small Vegetation Properties Using Visible and near-Infrared Reflectance. Comput. Electron. Agric. 2022, 202, 107359. [Google Scholar] [CrossRef]
- Barbedo, J.G.A. Detection of Nutrition Deficiencies in Plants Using Proximal Images and Machine Learning: A Review. Comput. Electron. Agric. 2019, 162, 482–492. [Google Scholar] [CrossRef]
- Tao, H.; Xu, S.; Tian, Y.; Li, Z.; Ge, Y.; Zhang, J.; Wang, Y.; Zhou, G.; Deng, X.; Zhang, Z.; et al. Proximal and Remote Sensing in Plant Phenomics: 20 Years of Progress, Challenges, and Perspectives. Plant Commun. 2022, 3, 100344. [Google Scholar] [CrossRef]
- Sanaeifar, A.; Yang, C.; De La Guardia, M.; Zhang, W.; Li, X.; He, Y. Proximal Hyperspectral Sensing of Abiotic Stresses in Plants. Sci. Total Environ. 2023, 861, 160652. [Google Scholar] [CrossRef]
- Liu, H.; Bruning, B.; Garnett, T.; Berger, B. The Performances of Hyperspectral Sensors for Proximal Sensing of Nitrogen Levels in Wheat. Sensors 2020, 20, 4550. [Google Scholar] [CrossRef]
- Pan, W.-J.; Wang, X.; Deng, Y.-R.; Li, J.-H.; Chen, W.; Chiang, J.Y.; Yang, J.-B.; Zheng, L. Nondestructive and Intuitive Determination of Circadian Chlorophyll Rhythms in Soybean Leaves Using Multispectral Imaging. Sci. Rep. 2015, 5, 11108. [Google Scholar] [CrossRef]
- Chungcharoen, T.; Donis-Gonzalez, I.; Phetpan, K.; Udompetaikul, V.; Sirisomboon, P.; Suwalak, R. Machine Learning-Based Prediction of Nutritional Status in Oil Palm Leaves Using Proximal Multispectral Images. Comput. Electron. Agric. 2022, 198, 107019. [Google Scholar] [CrossRef]
- Feilhauer, H.; Asner, G.P.; Martin, R.E. Multi-Method Ensemble Selection of Spectral Bands Related to Leaf Biochemistry. Remote Sens. Environ. 2015, 164, 57–65. [Google Scholar] [CrossRef]
- Zou, X.; Zhao, J.; Povey, M.J.W.; Holmes, M.; Hanpin, M. Variables Selection Methods in Near-Infrared Spectroscopy. Anal. Chim. Acta 2010, 667, 14–32. [Google Scholar]
- Chandrashekar, G.; Sahin, F. A Survey on Feature Selection Methods. Comput. Electr. Eng. 2014, 40, 16–28. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y. Mapping the Ratoon Rice Suitability Region in China Using Random Forest and Recursive Feature Elimination Modeling. Field Crop. Res. 2023, 301, 109016. [Google Scholar] [CrossRef]
- Uncu, Ö.; Türkşen, I.B. A Novel Feature Selection Approach: Combining Feature Wrappers and Filters. Inf. Sci. 2007, 177, 449–466. [Google Scholar] [CrossRef]
- Féret, J.-B.; François, C.; Gitelson, A.; Asner, G.P.; Barry, K.M.; Panigada, C.; Richardson, A.D.; Jacquemoud, S. Optimizing Spectral Indices and Chemometric Analysis of Leaf Chemical Properties Using Radiative Transfer Modeling. Remote Sens. Environ. 2011, 115, 2742–2750. [Google Scholar] [CrossRef]
- Shen, X.; Cao, L.; Coops, N.C.; Fan, H.; Wu, X.; Liu, H.; Wang, G.; Cao, F. Quantifying Vertical Profiles of Biochemical Traits for Forest Plantation Species Using Advanced Remote Sensing Approaches. Remote Sens. Environ. 2020, 250, 112041. [Google Scholar] [CrossRef]
- Tan, X.; Shan, Y.; Wang, L.; Yao, Y.; Jing, Z. Density vs. Cover: Which Is the Better Choice as the Proxy for Plant Community Species Diversity Estimated by Spectral Indexes? Int. J. Appl. Earth Obs. Geoinf. 2023, 121, 103370. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Wellburn, A.R. Determinations of Total Carotenoids and Chlorophylls a and b of Leaf Extracts in Different Solvents. Biochem. Soc. Trans. 1983, 11, 591–592. [Google Scholar] [CrossRef]
- Sun, Q. Monitoring Maize Canopy Chlorophyll Density under Lodging Stress Based on UAV Hyperspectral Imagery. Comput. Electron. Agric. 2022, 193, 106671. [Google Scholar] [CrossRef]
- Geladi, P.; MacDougall, D.; Martens, H. Linearization and Scatter-Correction for Near-Infrared Reflectance Spectra of Meat. Appl. Spectrosc. 1985, 39, 491–500. [Google Scholar] [CrossRef]
- Yu, K.; Lenz-Wiedemann, V.; Chen, X.; Bareth, G. Estimating Leaf Chlorophyll of Barley at Different Growth Stages Using Spectral Indices to Reduce Soil Background and Canopy Structure Effects. ISPRS J. Photogramm. Remote Sens. 2014, 97, 58–77. [Google Scholar] [CrossRef]
- Index Data Base (IDB). Available online: https://www.indexdatabase.de/ (accessed on 15 November 2023).
- Zarco-Tejada, P.J.; Miller, J.R.; Noland, T.L.; Mohammed, G.H.; Sampson, P.H. Scaling-up and Model Inversion Methods with Narrowband Optical Indices for Chlorophyll Content Estimation in Closed Forest Canopies with Hyperspectral Data. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1491–1507. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Arkebauer, T.J.; Rundquist, D.C.; Keydan, G.; Leavitt, B. Remote Estimation of Leaf Area Index and Green Leaf Biomass in Maize Canopies. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Datt, B.; McVicar, T.R.; Van Niel, T.G.; Jupp, D.L.B.; Pearlman, J.S. Preprocessing Eo-1 Hyperion Hyperspectral Data to Support the Application of Agricultural Indexes. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1246–1259. [Google Scholar] [CrossRef]
- Datt, B. Remote Sensing of Water Content in Eucalyptus Leaves. Aust. J. Bot. 1999, 47, 909. [Google Scholar] [CrossRef]
- Gobron, N.; Pinty, B.; Verstraete, M.M.; Widlowski, J.L. Advanced Vegetation Indices Optimized for Up-Coming Sensors: Design, Performance, and Applications. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2489–2505. [Google Scholar]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a Green Channel in Remote Sensing of Global Vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Wang, F.; Huang, J.; Tang, Y.; Wang, X. New Vegetation Index and Its Application in Estimating Leaf Area Index of Rice. Rice Sci. 2007, 14, 195–203. [Google Scholar] [CrossRef]
- Chen, J.M.; Cihlar, J. Retrieving Leaf Area Index of Boreal Conifer Forests Using Landsat TM Images. Remote Sens. Environ. 1996, 55, 153–162. [Google Scholar] [CrossRef]
- Dash, J.; Curran, P.J. The MERIS Terrestrial Chlorophyll Index. Int. J. Remote Sens. 2004, 25, 5403–5413. [Google Scholar] [CrossRef]
- Barnes, E.M.; Clarke, T.R.; Richards, S.E. Coincident detection of crop water stress, nitrogen status, and canopy density using ground based multispectral data. In Proceedings of the 5th International Conference on Precision Agriculture, Bloomington, MN, USA, 16–19 July 2010. [Google Scholar]
- Tucker, C.J.; Elgin, J.H.; McMurtrey, J.E.; Fan, C.J. Monitoring Corn and Soybean Crop Development with Hand-Held Radiometer Spectral Data. Remote Sens. Environ. 1979, 8, 237–248. [Google Scholar] [CrossRef]
- Peñuelas, J.; Gamon, J.A.; Fredeen, A.L.; Merino, J.; Field, C.B. Reflectance Indices Associated with Physiological Changes in Nitrogen- and Water-Limited Sunflower Leaves. Remote Sens. Environ. 1994, 48, 135–146. [Google Scholar] [CrossRef]
- Metternicht, G. Vegetation Indices Derived from High-Resolution Airborne Videography for Precision Crop Management. Int. J. Remote Sens. 2003, 24, 2855–2877. [Google Scholar] [CrossRef]
- Blackburn, G.A. Spectral Indices for Estimating Photosynthetic Pigment Concentrations: A Test Using Senescent Tree Leaves. Int. J. Remote Sens. 1998, 19, 657–675. [Google Scholar] [CrossRef]
- Roujean, J.-L.; Breon, F.-M. Estimating PAR Absorbed by Vegetation from Bidirectional Reflectance Measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar] [CrossRef]
- Serpico, S.B. Extraction of Spectral Channels from Hyperspectral Images for Classification Purposes. IEEE Trans. Geosci. Remote Sens. 2007, 45, 484–495. [Google Scholar] [CrossRef]
- CRAN-Package “Mlr3fselect”. Available online: http://ftp2.de.freebsd.org/pub/misc/cran/web/packages/mlr3fselect/mlr3fselect.pdf (accessed on 15 November 2023).
- Caret R Package. Available online: http://topepo.github.io/caret/recursive-feature-elimination.html (accessed on 14 November 2023).
- Rosipal, R.; Krämer, N. Overview and Recent Advances in Partial Least Squares; Springer: Berlin, Heidelberg, 2006; Volume 3940, pp. 34–51. [Google Scholar]
- Nazarloo, A.S.; Sharabiani, V.R.; Gilandeh, Y.A.; Taghinezhad, E.; Szymanek, M. Evaluation of Different Models for Non-Destructive Detection of Tomato Pesticide Residues Based on Near-Infrared Spectroscopy. Sensors. 2021, 21, 3032. [Google Scholar] [CrossRef] [PubMed]
- Smola, A.J.; Schölkopf, B. A Tutorial on Support Vector Regression. Stat. Comput. 2004, 14, 199–222. [Google Scholar] [CrossRef]
- Yamashita, H.; Sonobe, R.; Hirono, Y.; Morita, A.; Ikka, T. Dissection of Hyperspectral Reflectance to Estimate Nitrogen and Chlorophyll Contents in Tea Leaves Based on Machine Learning Algorithms. Sci. Rep. 2020, 10, 17360. [Google Scholar] [CrossRef]
Vegetation Index | Abbreviation | Formulation | Reference |
---|---|---|---|
Blue green pigment index | BGI | Blue/Green | [38] |
Chlorophyll index using green reflectance | CIgreen | (NIR/Green) − 1 | [39] |
Chlorophyll index using red edge reflectance | CIred-edge | (NIR/Edge1) − 1 | [39] |
Chlorophyll vegetation index | CVI | NIR × (RED/) | [40] |
Datt | Datt | (NIR − Edge1)/(NIR − Red) | [41] |
Green leaf index | GLI | (2 × Green − Red − Blue)/(2 × Green + Red + Blue) | [42] |
Green normalized difference vegetation index | GNDVI | (NIR − Green)/(NIR + Green) | [43] |
Green-red NDVI | GRNDVI | (NIR − Green − Blue)/(NIR + Green + Blue) | [44] |
Leaf chlorophyll index | LCI | (NIR − Edge1)/(NIR + Red) | [41] |
Modified NDVI | mNDVI | (NIR − Red)/(NIR + Red − 2 × Blue) | [3] |
Modified simple ratio | MSR | [(NIR/Red) − 1)]/(] | [45] |
Modified red-edge simple ratio | MSRred-edge | (NIR − Edge1 − 1)/) | [45] |
MERIS terrestrial chlorophyll index | MTCI | (Edge2 − Edge1)/(Edge1 − Red) | [46] |
Normalized difference red edge index | NDRE | (NIR − Edge1)/(NIR + Edge1) | [47] |
Normalized difference vegetation index | NDVI | (NIR − Red)/(NIR + Red) | [48] |
Green NDVI | NDVIg | (Edge2 − Green)/(Edge2 + Green) | [43] |
Normalized green-red difference index | NGRDI | (Green − Red)/(Green + Red) | [38] |
Normalized pigment chlorophyll index | NPCI | (Red − Blue)/(Red + Blue) | [49] |
Normalized difference vegetation index | PPR | (Green − Blue)/(Green + Blue) | [50] |
Pigment specific simple ratio | PSSR | NIR/Red | [51] |
Renormalized difference vegetation index | RDVI | (NIR − Red)/() | [52] |
Red edge normalized difference vegetation index | RENDVI | (Edge2 − Edge1)/(Edge2 + Edge1) | [43] |
Structure insensitive pigment index 2 | SIPI2 | (NIR − Blue)/(NIR − Red) | [51] |
Simple ratio vegetation index 450/660 | SR450/660 | Blue/Red | [49] |
Simple ratio vegetation index 750/555 | SR750/555 | Edge2/Green | [39] |
Vogelmann red edge index 1 | VOG1 | Edge2/Edge1 | [49] |
Type | Variable Selection Algorithm | Chla+b (μg/cm2) | Car (μg/cm2) | ||
---|---|---|---|---|---|
Number of Variables | Input Variables | Number of Variables | Input Variables | ||
OS | pls-corr | 6 | MTCI VOG1 RENDVI NDRE CIre LCI | 12 | MTCI CIre NDRE VOG1 Datt CVI RENDVI LCI MSRre CIg SR750_555 BGI |
svm-corr | 18 | MTCI VOG1 RENDVI NDRE CIre LCI MSRre Datt CVI CIg SR750_555 NDVIg GNDVI PPR BGI GRNDVI SR450_660 RDVI | 18 | MTCI CIre NDRE VOG1 Datt CVI RENDVI LCI MSRre CIg SR750_555 BGI PPR NDVIg GNDVI GRNDVI GLI SR450_660 | |
lm-rfe | 5 | NDRE LCI CIre VOG1 NDVI | 4 | NDRE LCI CIre VOG1 | |
svm-rfe | 24 | RENDVI VOG1 MTCI NDRE CIre LCI MSRre Datt CIg CVI SR750_555 NDVIg GNDVI PPR BGI GRNDVI SIPI2 mNDVI PSSR RDVI MSR NDVI SR450_660 NPCI | 15 | RENDVI VOG1 MTCI NDRE CIre LCI Datt CVI CIg MSRre SR750_555 BGI PPR NDVIg GNDVI | |
lm-sfs | 10 | B2 B4 B5 BGI GNDVI LCI MSRre MTCI PPR VOG1 | 20 | B2 BGI CIg CIre GNDVI GRNDVI LCI MSR MSRre NDVI NDVIg NPCI PPR PSSR RDVI RENDVI SIPI2 SR450_660 SR750_555 VOG1 | |
svm-sfs | 7 | CIg CVI LCI MSRre RENDVI SR450_660 VOG1 | 7 | BGI CIg GNDVI NDVIg PPR RENDVI SR450_660 | |
MSC | pls-corr | 8 | VOG1 LCI RENDVI CIre CIg NDRE MTCI SR750_555 | 11 | CIre B4 NDRE CIg LCI VOG1 MTCI RENDVI CVI B2 Datt |
svm-corr | 31 | CIre B4 NDRE CIg LCI VOG1 MTCI RENDVI CVI B2 Datt SR750_555 MSRre GNDVI NDVIg GRNDVI GLI BGI PPR PSSR MSR NDVI B3 RDVI mNDVI SR450_660 NPCI SIPI2 NGRDI B5 B6 | 30 | CIre B4 NDRE CIg LCI VOG1 MTCI RENDVI CVI B2 Datt SR750_555 MSRre GNDVI NDVIg GRNDVI GLI BGI PPR PSSR MSR NDVI B3 RDVI mNDVI SR450_660 NPCI SIPI2 NGRDI B5 | |
lm-rfe | 5 | MSR NDVI PSSR LCI NDRE | 6 | MSR NDVI PSSR NDRE PPR mNDVI | |
svm-rfe | 15 | VOG1 LCI RENDVI CIg GRNDVI NDRE CIre SR750_555 NDVIg GNDVI B2 MTCI MSRre B4 Datt | 25 | CIg RENDVI VOG1 LCI B2 B4 GRNDVI NDRE CIre NDVIg GNDVI SR750_555 MTCI CVI Datt MSRre BGI PPR GLI B6 NDVI PSSR MSR B3 RDVI | |
lm-sfs | 9 | CIg Datt GNDVI MSR MTCI NDVIg NGRDI SR750_555 VOG1 | 10 | B2 B5 B6 CIg CIre GLI MSRre MTCI NDRE RENDVI | |
svm-sfs | 3 | B6 MTCI VOG1 | 3 | B4 B6 RENDVI |
Type | Variable Selection Algorithm | PLSR | SVR | ||
---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | ||
OS | - | 0.760 | 6.452 | 0.759 | 6.480 |
corr | 0.759 | 6.454 | 0.787 | 6.089 | |
lm-rfe | 0.726 | 6.884 | 0.737 | 6.728 | |
svm-rfe | 0.772 | 6.304 | 0.773 | 6.280 | |
lm-sfs | 0.815 | 5.649 | 0.769 | 6.352 | |
svm-sfs | 0.774 | 6.247 | 0.813 | 5.694 | |
MSC | - | 0.796 | 6.207 | 0.823 | 5.566 |
cor-fs | 0.785 | 6.082 | 0.816 | 5.637 | |
lm-rfe | 0.755 | 6.507 | 0.798 | 5.923 | |
svm-rfe | 0.769 | 6.324 | 0.796 | 5.922 | |
lm-sfs | 0.778 | 6.265 | 0.789 | 6.059 | |
svm-sfs | 0.748 | 6.598 | 0.849 | 5.116 |
Type | Variable Selection Algorithm | PLSR | SVR | ||
---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | ||
OS | - | 0.654 | 1.229 | 0.645 | 1.251 |
corr | 0.649 | 1.224 | 0.661 | 1.204 | |
lm-rfe | 0.630 | 1.258 | 0.624 | 1.268 | |
svm-rfe | 0.642 | 1.237 | 0.657 | 1.212 | |
lm-sfs | 0.726 | 1.089 | 0.657 | 1.215 | |
svm-sfs | 0.646 | 1.232 | 0.673 | 1.185 | |
MSC | - | 0.693 | 1.175 | 0.748 | 1.037 |
cor-fs | 0.702 | 1.139 | 0.749 | 1.037 | |
lm-rfe | 0.648 | 1.228 | 0.691 | 1.156 | |
svm-rfe | 0.654 | 1.216 | 0.724 | 1.092 | |
lm-sfs | 0.739 | 1.058 | 0.804 | 0.919 | |
svm-sfs | 0.655 | 1.215 | 0.825 | 0.869 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Xue, Y. Estimation of Biochemical Pigment Content in Poplar Leaves Using Proximal Multispectral Imaging and Regression Modeling Combined with Feature Selection. Sensors 2024, 24, 217. https://doi.org/10.3390/s24010217
Zhang C, Xue Y. Estimation of Biochemical Pigment Content in Poplar Leaves Using Proximal Multispectral Imaging and Regression Modeling Combined with Feature Selection. Sensors. 2024; 24(1):217. https://doi.org/10.3390/s24010217
Chicago/Turabian StyleZhang, Changsai, and Yong Xue. 2024. "Estimation of Biochemical Pigment Content in Poplar Leaves Using Proximal Multispectral Imaging and Regression Modeling Combined with Feature Selection" Sensors 24, no. 1: 217. https://doi.org/10.3390/s24010217
APA StyleZhang, C., & Xue, Y. (2024). Estimation of Biochemical Pigment Content in Poplar Leaves Using Proximal Multispectral Imaging and Regression Modeling Combined with Feature Selection. Sensors, 24(1), 217. https://doi.org/10.3390/s24010217