Intelligent Point Cloud Processing, Sensing, and Understanding
1. Introduction
2. Overview of Contributions
3. Conclusions
Author Contributions
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Contributions
- Balcı, M.A.; Akgüller, Ö.; Batrancea, L.M.; Gaban, L. Discrete Geodesic Distribution-Based Graph Kernel for 3D Point Clouds. Sensors 2023, 23, 2398.
- Peng, Y.; Feng, H.; Chen, T.; Hu, B. Point Cloud Instance Segmentation with Inaccurate Bounding-Box Annotations. Sensors 2023, 23, 2343.
- Pang, L.; Liu, D.; Li, C.; Zhang, F. Automatic Registration of Homogeneous and Cross-Source TomoSAR Point Clouds in Urban Areas. Sensors 2023, 23, 852.
- Dal’Col, L.; Coelho, D.; Madeira, T.; Dias, P.; Oliveira, M. A Sequential Color Correction Approach for Texture Mapping of 3D Meshes. Sensors 2023, 23, 607.
- Xie, X.; Wei, H.; Yang, Y. Real-Time LiDAR Point-Cloud Moving Object Segmentation for Autonomous Driving. Sensors 2023, 23, 547.
- Gonizzi Barsanti, S.; Guagliano, M.; Rossi, A. 3D Reality-Based Survey and Retopology for Structural Analysis of Cultural Heritage. Sensors 2022, 22, 9593.
- Lee, H.; Lim, S. PU-MFA: Point Cloud Up-Sampling via Multi-Scale Features Attention. Sensors 2022, 22, 9308.
- Li, B.; Guo, C. MASPC_Transform: A Plant Point Cloud Segmentation Network Based on Multi-Head Attention Separation and Position Code. Sensors 2022, 22, 9225.
- Li, B.; Zhu, S.; Lu, Y. A single stage and single view 3D point cloud reconstruction network based on DetNet. Sensors 2022, 22, 8235.
- Alaba, S.Y.; Ball, J.E. A survey on deep-learning-based lidar 3d object detection for autonomous driving. Sensors 2022, 22, 9577.
References
- Xu, H.; Li, C.; Hu, Y.; Li, S.; Kong, R.; Zhang, Z. Quantifying the effects of 2D/3D urban landscape patterns on land surface temperature: A perspective from cities of different sizes. Build. Environ. 2023, 233, 110085. [Google Scholar] [CrossRef]
- Rogers, C.; Piggott, A.Y.; Thomson, D.J.; Wiser, R.F.; Opris, I.E.; Fortune, S.A.; Compston, A.J.; Gondarenko, A.; Meng, F.; Chen, X.; et al. A universal 3D imaging sensor on a silicon photonics platform. Nature 2021, 590, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, S.; Preda, M.; Baroncini, V.; Budagavi, M.; Cesar, P.; Chou, P.A.; Cohen, R.A.; Krivokuća, M.; Lasserre, S.; Li, Z.; et al. Emerging MPEG standards for point cloud compression. IEEE J. Emerg. Sel. Top. Circuits Syst. 2018, 9, 133–148. [Google Scholar] [CrossRef]
- Wang, Q.; Tan, Y.; Mei, Z. Computational methods of acquisition and processing of 3D point cloud data for construction applications. Arch. Comput. Methods Eng. 2020, 27, 479–499. [Google Scholar] [CrossRef]
- Amarasingam, N.; Salgadoe, A.S.A.; Powell, K.; Gonzalez, L.F.; Natarajan, S. A review of UAV platforms, sensors, and applications for monitoring of sugarcane crops. Remote Sens. Appl. Soc. Environ. 2022, 26, 100712. [Google Scholar] [CrossRef]
- Lei, J.; Song, J.; Peng, B.; Li, W.; Pan, Z.; Huang, Q. C2FNet: A coarse-to-fine network for multi-view 3D point cloud generation. IEEE Trans. Image Process. 2022, 31, 6707–6718. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Gu, Y.; Li, X. A Robust Multispectral Point Cloud Generation Method Based on 3D Reconstruction from Multispectral Images. IEEE Trans. Geosci. Remote Sens. 2023, 62, 5407612. [Google Scholar]
- Rebolj, D.; Pučko, Z.; Babič, N.Č.; Bizjak, M.; Mongus, D. Point cloud quality requirements for Scan-vs-BIM based automated construction progress monitoring. Autom. Constr. 2017, 84, 323–334. [Google Scholar] [CrossRef]
- Xie, W.; Wang, M.; Lin, D.; Shi, B.; Jiang, J. Surface Geometry Processing: An Efficient Normal-based Detail Representation. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 13749–13765. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, K.; Arashpour, M.; Asadi, E.; Masoumi, H.; Bai, Y.; Behnood, A. 3D point cloud data processing with machine learning for construction and infrastructure applications: A comprehensive review. Adv. Eng. Inform. 2022, 51, 101501. [Google Scholar] [CrossRef]
- Sun, X.; Wang, M.; Du, J.; Sun, Y.; Cheng, S.S.; Xie, W. A Task-Driven Scene-Aware LiDAR Point Cloud Coding Framework for Autonomous Vehicles. IEEE Trans. Ind. Inform. 2022, 1, 1–11. [Google Scholar] [CrossRef]
- Pomerleau, F.; Colas, F.; Siegwart, R. A Review of Point Cloud Registration Algorithms for Mobile Robotics; Now Publishers Foundations and Trends® in Robotics: Hanover, MA, USA, 2015; Volume 4, pp. 1–104. [Google Scholar]
- Chen, Y.; Wang, Q.; Chen, H.; Song, X.; Tang, H.; Tian, M. An overview of augmented reality technology. J. Phys. Conf. Ser. 2019, 1237, 022082. [Google Scholar] [CrossRef]
- Alexander, C.; Tansey, K.; Kaduk, J.; Holland, D.; Tate, N.J. An approach to classification of airborne laser scanning point cloud data in an urban environment. Int. J. Remote Sens. 2011, 32, 9151–9169. [Google Scholar] [CrossRef]
- Li, Y.; Ma, L.; Zhong, Z.; Liu, F.; Chapman, M.A.; Cao, D.; Li, J. Deep learning for LiDAR point clouds in autonomous driving: A review. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 3412–3432. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, H.; Hu, Q.; Liu, H.; Liu, L.; Bennamoun, M. Deep learning for 3D point clouds: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 4338–4364. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Yu, Y.; Xu, J.; Ni, F.; Le, X. Pf-net: Point fractal network for 3d point cloud completion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 7662–7670. [Google Scholar]
- Huang, R.; Wang, M. Patch-Wise LiDAR Point Cloud Geometry Compression Based on Autoencoder. In Proceedings of the International Conference on Image and Graphics (ICIG), Nanjing, China, 22–24 September 2023; pp. 299–310. [Google Scholar]
- Ma, B.; Liu, Y.S.; Zwicker, M.; Han, Z. Surface reconstruction from point clouds by learning predictive context priors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 6326–6337. [Google Scholar]
- Zhou, Y.; Sun, P.; Zhang, Y.; Anguelov, D.; Gao, J.; Ouyang, T.; Guo, J.; Ngiam, J.; Vasudevan, V. End-to-end multi-view fusion for 3D object detection in lidar point clouds. In Proceedings of the Conference on Robot Learning (CoRL), Virtual, 16–18 November 2020; pp. 923–932. [Google Scholar]
- Yang, B.; Haala, N.; Dong, Z. Progress and perspectives of point cloud intelligence. Geo-Spat. Inf. Sci. 2023, 26, 189–205. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Yue, G.; Xiong, J.; Tian, S. Intelligent Point Cloud Processing, Sensing, and Understanding. Sensors 2024, 24, 283. https://doi.org/10.3390/s24010283
Wang M, Yue G, Xiong J, Tian S. Intelligent Point Cloud Processing, Sensing, and Understanding. Sensors. 2024; 24(1):283. https://doi.org/10.3390/s24010283
Chicago/Turabian StyleWang, Miaohui, Guanghui Yue, Jian Xiong, and Sukun Tian. 2024. "Intelligent Point Cloud Processing, Sensing, and Understanding" Sensors 24, no. 1: 283. https://doi.org/10.3390/s24010283
APA StyleWang, M., Yue, G., Xiong, J., & Tian, S. (2024). Intelligent Point Cloud Processing, Sensing, and Understanding. Sensors, 24(1), 283. https://doi.org/10.3390/s24010283