Automatic Seizure Detection Based on Stockwell Transform and Transformer
Abstract
:1. Introduction
2. Methods
2.1. Stockwell Transform
2.2. Transformer
2.3. Post-Processing
3. Experiments and Results
3.1. EEG Dataset
3.2. Experimental Process and Evaluation
3.3. Results
4. Discussion
4.1. Comparison with Existing Methods
4.2. Visualization of t-Distributed Stochastic Neighbor Embedding (t-SNE)
4.3. Attention to EEG Channels
4.4. Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Epilepsy. Available online: https://www.who.int/zh/news-room/fact-sheets/detail/epilepsy (accessed on 13 October 2023).
- Xin, Q.; Hu, S.; Liu, S.; Zhao, L.; Zhang, Y.D. An Attention-Based Wavelet Convolution Neural Network for Epilepsy EEG Classification. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 957–966. [Google Scholar] [CrossRef] [PubMed]
- Patil, A.U.; Dube, A.; Jain, R.K.; Jindal, G.D.; Madathil, D. Classification and Comparative Analysis of Control and Migraine Subjects Using EEG Signals. In Information Systems Design and Intelligent Applications: Proceedings of Fifth International Conference INDIA 2018.; Advances in Intelligent Systems and Computing (AISC 862); Springer: Singapore, 2019; pp. 31–39. [Google Scholar]
- Smith, S.J. EEG in the diagnosis, classification, and management of patients with epilepsy. J. Neurol. Neurosurg. Psychiatry 2005, 76 (Suppl. 2), ii2–ii7. [Google Scholar] [CrossRef] [PubMed]
- Xin, Q.; Hu, S.H.; Liu, S.Q.; Ma, X.L.; Lv, H.; Zhang, Y.D. Epilepsy EEG Classification Based on Convolution Support Vector Machine. J. Med. Imaging Health Inform. 2021, 11, 25–32. [Google Scholar] [CrossRef]
- Gotman, J. Automatic Recognition of Epileptic Seizures in the EEG. Electroencephalogr. Clin. Neurophysiol. 1982, 54, 530–540. [Google Scholar] [CrossRef] [PubMed]
- Gotman, J. Automatic Seizure Detection—Improvements and Evaluation. Electroencephalogr. Clin. Neurophysiol. 1990, 76, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Qu, H.; Gotman, J. Improvement in Seizure Detection Performance by Automatic Adaptation to the Eeg of Each Patient. Electroencephalogr. Clin. Neurophysiol. 1993, 86, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Kabir, E.; Siuly; Cao, J.L.; Wang, H. A computer aided analysis scheme for detecting epileptic seizure from EEG data. Int. J. Comput. Int. Syst. 2018, 11, 663–671. [Google Scholar] [CrossRef]
- Samiee, K.; Kovacs, P.; Gabbouj, M. Epileptic Seizure Classification of EEG Time-Series Using Rational Discrete Short-Time Fourier Transform. IEEE Trans. Biomed. Eng. 2015, 62, 541–552. [Google Scholar] [CrossRef]
- Tzallas, A.T.; Tsipouras, M.G.; Fotiadis, D.I. Epileptic Seizure Detection in EEGs Using Time-Frequency Analysis. IEEE Trans. Inf. Technol. Biomed. 2009, 13, 703–710. [Google Scholar] [CrossRef]
- Logesparan, L.; Casson, A.J.; Rodriguez-Villegas, E. Optimal features for online seizure detection. Med. Biol. Eng. Comput. 2012, 50, 659–669. [Google Scholar] [CrossRef]
- Riaz, F.; Hassan, A.; Rehman, S.; Niazi, I.K.; Dremstrup, K. EMD-Based Temporal and Spectral Features for the Classification of EEG Signals Using Supervised Learning. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 24, 28–35. [Google Scholar] [CrossRef]
- Al Ghayab, H.R.; Li, Y.; Siuly, S.; Abdulla, S. Epileptic EEG signal classification using optimum allocation based power spectral density estimation. IET Signal Process. 2018, 12, 738–747. [Google Scholar] [CrossRef]
- Al Ghayab, H.R.; Li, Y.; Siuly, S.; Abdulla, S. Epileptic seizures detection in EEGs blending frequency domain with information gain technique. Soft Comput. 2019, 23, 227–239. [Google Scholar] [CrossRef]
- Khamis, H.; Mohamed, A.; Simpson, S. Frequency-moment signatures: A method for automated seizure detection from scalp EEG. Clin. Neurophysiol. 2013, 124, 2317–2327. [Google Scholar] [CrossRef] [PubMed]
- Rana, P.; Lipor, J.; Lee, H.; van Drongelen, W.; Kohrman, M.H.; Van Veen, B. Seizure Detection Using the Phase-Slope Index and Multichannel ECoG. IEEE Trans. Biomed. Eng. 2012, 59, 1125–1134. [Google Scholar] [CrossRef]
- Kapoor, B.; Nagpal, B.; Jain, P.K.; Abraham, A.; Gabralla, L.A. Epileptic Seizure Prediction Based on Hybrid Seek Optimization Tuned Ensemble Classifier Using EEG Signals. Sensors 2022, 23, 423. [Google Scholar] [CrossRef]
- Hussein, R.; Palangi, H.; Ward, R.K.; Wang, Z.J. Optimized deep neural network architecture for robust detection of epileptic seizures using EEG signals. Clin. Neurophysiol. 2019, 130, 25–37. [Google Scholar] [CrossRef]
- Liu, G.; Tian, L.; Zhou, W. Patient-Independent Seizure Detection Based on Channel-Perturbation Convolutional Neural Network and Bidirectional Long Short-Term Memory. Int. J. Neural Syst. 2022, 32, 2150051. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Guo, Y.Z.; Liao, X.F.; Hu, B.; Yu, T. Spatio-Temporal-Spectral Hierarchical Graph Convolutional Network With Semisupervised Active Learning for Patient-Specific Seizure Prediction. IEEE Trans. Cybern. 2022, 52, 12189–12204. [Google Scholar] [CrossRef]
- Acharya, U.R.; Oh, S.L.; Hagiwara, Y.; Tan, J.H.; Adeli, H. Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Comput. Biol. Med. 2018, 100, 270–278. [Google Scholar] [CrossRef]
- Dong, C.; Zhao, Y.; Zhang, G.; Xue, M.; Chu, D.; He, J.; Ge, X. Attention-based Graph ResNet with focal loss for epileptic seizure detection. J. Ambient Intell. Smart Environ. 2022, 14, 61–73. [Google Scholar] [CrossRef]
- Tsiouris, Κ.Μ.; Pezoulas, V.C.; Zervakis, M.; Konitsiotis, S.; Koutsouris, D.D.; Fotiadis, D.I. A Long Short-Term Memory deep learning network for the prediction of epileptic seizures using EEG signals. Comput. Biol. Med. 2018, 99, 24–37. [Google Scholar] [CrossRef] [PubMed]
- Truong, N.D.; Nguyen, A.D.; Kuhlmann, L.; Bonyadi, M.R.; Yang, J.; Ippolito, S.; Kavehei, O. Convolutional neural networks for seizure prediction using intracranial and scalp electroencephalogram. Neural Netw. 2018, 105, 104–111. [Google Scholar] [CrossRef]
- Alickovic, E.; Kevric, J.; Subasi, A. Performance evaluation of empirical mode decomposition, discrete wavelet transform, and wavelet packed decomposition for automated epileptic seizure detection and prediction. Biomed. Signal Process. Control 2018, 39, 94–102. [Google Scholar] [CrossRef]
- Molla, M.K.I.; Hassan, K.M.; Islam, M.R.; Tanaka, T. Graph Eigen Decomposition-Based Feature-Selection Method for Epileptic Seizure Detection Using Electroencephalography. Sensors 2020, 20, 4639. [Google Scholar] [CrossRef]
- Stockwell, R.G.; Mansinha, L.; Lowe, R.P. Localization of the complex spectrum: The S transform. IEEE Trans. Signal Process. 1996, 44, 998–1001. [Google Scholar] [CrossRef]
- Moukadem, A.; Dieterlen, A.; Hueber, N.; Brandt, C. A robust heart sounds segmentation module based on S-transform. Biomed. Signal Process. Control 2013, 8, 273–281. [Google Scholar] [CrossRef]
- Lee, C.Y.; Shen, Y.X. Feature Analysis of Power Quality Disturbance in Smart Grid Using S-Transform and TT-Transform. Int. Rev. Electr. Eng.-I 2012, 7, 4208–4220. [Google Scholar]
- Raj, S.; Phani, T.C.K.; Dalei, J. Power Quality Analysis Using Modified S-Transform on ARM Processor. In Proceedings of the 2016 Sixth International Symposium on Embedded Computing and System Design (Ised 2016), Patna, India, 15–17 December 2016; pp. 166–170. [Google Scholar]
- Dash, P.K.; Panigrahi, B.K.; Panda, G. Power quality analysis using S-Transform. IEEE Trans. Power Deliv. 2003, 18, 406–411. [Google Scholar] [CrossRef]
- Assous, S.; Humeau, A.; Tartas, M.; Abraham, P.; L’Huillier, J.P. S-transform applied to laser Doppler flowmetry reactive hyperemia signals. IEEE Trans. Biomed. Eng. 2006, 53, 1032–1037. [Google Scholar] [CrossRef]
- Liu, G.; Zhou, W.; Geng, M. Automatic Seizure Detection Based on S-Transform and Deep Convolutional Neural Network. Int. J. Neural Syst. 2020, 30, 1950024. [Google Scholar] [CrossRef] [PubMed]
- Geng, M.; Zhou, W.; Liu, G.; Li, C.; Zhang, Y. Epileptic Seizure Detection Based on Stockwell Transform and Bidirectional Long Short-Term Memory. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Kalbkhani, H.; Shayesteh, M.G. Stockwell transform for epileptic seizure detection from EEG signals. Biomed. Signal Process. Control 2017, 38, 108–118. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. In Proceedings of 31st Annual Conference on Neural Information Processing Systems (NIPS), Long Beach, CA, USA, 4–9 December 2017; pp. 5998–6008. [Google Scholar]
- Wang, W.; Xie, E.; Li, X.; Fan, D.-P.; Song, K.; Liang, D.; Lu, T.; Luo, P.; Shao, L. PVT v2: Improved baselines with Pyramid Vision Transformer. Comput. Vis. Media 2022, 8, 415–424. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Mohamed, A.; Le, D.; Liu, C.X.; Xiao, A.; Mahadeokar, J.; Huang, H.Z.; Tjandra, A.; Zhang, X.H.; Zhang, F.; et al. Transformer-Based Acoustic Modeling for Hybrid Speech Recognition. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; IEEE: Barcelona, Spain, 2020; pp. 6874–6878. [Google Scholar]
- Li, W.; Liu, H.; Ding, R.; Liu, M.; Wang, P.; Yang, W. Exploiting Temporal Contexts With Strided Transformer for 3D Human Pose Estimation. IEEE Trans. Multimed. 2023, 25, 1282–1293. [Google Scholar] [CrossRef]
- Sun, J.; Wang, X.; Zhao, K.; Hao, S.Y.; Wang, T.Y. Multi-Channel EEG Emotion Recognition Based on Parallel Transformer and 3D-Convolutional Neural Network. Mathematics 2022, 10, 3131. [Google Scholar] [CrossRef]
- Yan, J.Z.; Li, J.N.; Xu, H.X.; Yu, Y.C.; Xu, T.Y. Seizure Prediction Based on Transformer Using Scalp Electroencephalogram. Appl Sci. 2022, 12, 4158. [Google Scholar] [CrossRef]
- Li, J.C.; Pan, W.J.; Huang, H.Y.; Pan, J.H.; Wang, F. STGATE: Spatial-temporal graph attention network with a transformer encoder for EEG-based emotion recognition. Front. Hum. Neurosci. 2023, 17, 1169949. [Google Scholar] [CrossRef]
- Sun, Y.; Jin, W.; Si, X.; Zhang, X.; Cao, J.; Wang, L.; Yin, S.; Ming, D. Continuous Seizure Detection Based on Transformer and Long-Term iEEG. IEEE J. Biomed. Health Inform. 2022, 26, 5418–5427. [Google Scholar] [CrossRef]
- Shoeb, A.H. Application of Machine Learning to Epileptic Seizure Onset Detection and Treatment. Ph.D. Thesis, Massachusetts institute of Technology, Cambridge, MA, USA, 2009. [Google Scholar]
- Goldberger, A.L.; Amaral, L.A.N.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet—Components of a new research resource for complex physiologic signals. Circulation 2000, 101, E215–E220. [Google Scholar] [CrossRef]
- CHB-MIT Scalp EEG Database. Available online: https://physionet.org/content/chbmit/1.0.0/ (accessed on 11 March 2023).
- Hanley, J.A.; McNeil, B.J. The Meaning and Use of the Area under a Receiver Operating Characteristic (ROC) Curve. Radiology 1982, 143, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Ansari, A.Q.; Sharma, P.; Tripathi, M. Automatic seizure detection using neutrosophic classifier. Phys. Eng. Sci. Med. 2020, 43, 1019–1028. [Google Scholar] [CrossRef]
- Janjarasjitt, S. Epileptic seizure classifications of single-channel scalp EEG data using wavelet-based features and SVM. Med. Biol. Eng. Comput. 2017, 55, 1743–1761. [Google Scholar] [CrossRef] [PubMed]
- He, J.T.; Cui, J.; Zhang, G.B.; Xue, M.R.; Chu, D.Y.; Zhao, Y.N. Spatial-temporal seizure detection with graph attention network and bi-directional LSTM architecture. Biomed. Signal Process. Control 2022, 78, 103908. [Google Scholar] [CrossRef]
- Yao, S.X.; Zhang, Y.L. Transfer Learning and Gated Recurrent Unit Based Epileptic Seizure Detection Method. In Proceedings of the 4th International Conference on Informatics Engineering & Information Science (ICIEIS2021), Tianjin, China, 19–21 November 2021; SPIE: Washington, DC, USA; p. 12161. [Google Scholar]
- Cura, O.K.; Akan, A. Classification of Epileptic EEG Signals Using Synchrosqueezing Transform and Machine Learning. Int. J. Neural Syst. 2021, 31, 2150005. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Yuan, S.; Xu, F.; Leng, Y.; Yuan, K.; Yuan, Q. Scalp EEG classification using deep Bi-LSTM network for seizure detection. Comput. Biol. Med. 2020, 124, 103919. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.; Wang, Z.; Qiao, Y.; Wang, Y.; Huang, Z.; Zhang, B. An Automatic Method for Epileptic Seizure Detection Based on Deep Metric Learning. IEEE J. Biomed. Health Inform. 2022, 26, 2147–2157. [Google Scholar] [CrossRef] [PubMed]
- Shyu, K.K.; Huang, S.C.; Lee, L.H.; Lee, P.L. Less Parameterization Inception-Based End to End CNN Model for EEG Seizure Detection. IEEE Access 2023, 11, 49172–49182. [Google Scholar] [CrossRef]
- Jiang, L.; He, J.; Pan, H.; Wu, D.; Jiang, T.; Liu, J. Seizure detection algorithm based on improved functional brain network structure feature extraction. Biomed. Signal Process. Control 2023, 79, 104053. [Google Scholar] [CrossRef]
- Gao, B.; Zhou, J.; Yang, Y.; Chi, J.; Yuan, Q. Generative adversarial network and convolutional neural network-based EEG imbalanced classification model for seizure detection. Biocybern. Biomed. Eng. 2022, 42, 1–15. [Google Scholar] [CrossRef]
- Zhang, Y.; Yao, S.; Yang, R.; Liu, X.; Qiu, W.; Han, L.; Zhou, W.; Shang, W. Epileptic Seizure Detection Based on Bidirectional Gated Recurrent Unit Network. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Yoshiba, T.; Kawamoto, H.; Sankai, Y. Basic study of epileptic seizure detection using a single-channel frontal EEG and a pre-trained ResNet. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2021, 2021, 3082–3088. [Google Scholar] [PubMed]
- Samiee, K.; Kovács, P.; Gabbouj, M. Epileptic seizure detection in long-term EEG records using sparse rational decomposition and local Gabor binary patterns feature extraction. Knowl.-Based Syst. 2017, 118, 228–240. [Google Scholar] [CrossRef]
- Sun, B.; Wu, Z.; Hu, Y.; Li, T. Golden subject is everyone: A subject transfer neural network for motor imagery-based brain computer interfaces. Neural Netw. 2022, 151, 111–120. [Google Scholar] [CrossRef]
- Affes, A.; Mdhaffar, A.; Triki, C.; Jmaiel, M.; Freisleben, B. Personalized attention-based EEG channel selection for epileptic seizure prediction. Expert Syst. Appl. 2022, 206, 117733. [Google Scholar] [CrossRef]
Patient | Gender | Age (Years) | No. of Used Channels | No. of Epileptic Events | Duration of Epileptic Seizures (s) |
---|---|---|---|---|---|
1 | F | 11 | 23 | 7 | 442 |
2 | M | 11 | 23 | 3 | 172 |
3 | F | 14 | 23 | 7 | 402 |
4 | M | 22 | 23 | 4 | 378 |
5 | F | 7 | 23 | 5 | 558 |
6 | F | 1.5 | 23 | 10 | 138 |
7 | F | 14.5 | 23 | 3 | 325 |
8 | M | 3.5 | 23 | 5 | 919 |
9 | F | 10 | 23 | 4 | 276 |
10 | M | 3 | 23 | 7 | 447 |
11 | F | 12 | 23 | 3 | 806 |
12 | F | 2 | 23 | 40 | 1475 |
13 | F | 3 | 18 | 12 | 535 |
14 | F | 9 | 23 | 8 | 109 |
15 | M | 16 | 18 | 20 | 1992 |
16 | F | 7 | 18 | 10 | 84 |
17 | F | 12 | 23 | 3 | 293 |
18 | F | 18 | 23 | 6 | 317 |
19 | F | 19 | 23 | 3 | 236 |
20 | F | 6 | 23 | 8 | 294 |
21 | F | 13 | 23 | 4 | 199 |
22 | F | 9 | 23 | 3 | 204 |
23 | F | 6 | 23 | 7 | 424 |
24 | - | - | 23 | 16 | 511 |
Patient | Accuracy (%) | Sensitivity (%) | Specificity (%) | Precision (%) | AUC |
---|---|---|---|---|---|
1 | 99.11 | 98.21 | 100 | 100 | 1 |
2 | 97.73 | 95.24 | 100 | 100 | 0.9917 |
3 | 95.05 | 96 | 94.12 | 94.12 | 0.9694 |
4 | 96.88 | 97.56 | 96.36 | 95.24 | 0.9849 |
5 | 99.29 | 98.73 | 100 | 100 | 1 |
6 | 97.22 | 94.44 | 100 | 100 | 0.9938 |
7 | 96.3 | 95.24 | 97.44 | 97.56 | 0.9939 |
8 | 97.40 | 97.30 | 97.50 | 97.30 | 0.9877 |
9 | 100 | 100 | 100 | 100 | 1 |
10 | 98.25 | 98.39 | 98.08 | 98.39 | 0.9932 |
11 | 96.53 | 97.73 | 95.61 | 94.51 | 0.9929 |
12 | 97.10 | 96.00 | 98.28 | 98.36 | 0.9919 |
13 | 96.92 | 95.45 | 98.44 | 98.44 | 0.9744 |
14 | 97.78 | 100 | 96.30 | 94.74 | 0.9979 |
15 | 89.02 | 84.21 | 93.88 | 93.27 | 0.9377 |
16 | 100 | 100 | 100 | 100 | 1 |
17 | 93.06 | 94.59 | 91.43 | 92.11 | 0.9521 |
18 | 93.67 | 90.48 | 97.30 | 97.44 | 0.9665 |
19 | 96.61 | 100 | 93.75 | 93.10 | 0.9954 |
20 | 94.44 | 92.68 | 96.77 | 97.44 | 0.9929 |
21 | 83.67 | 95.65 | 73.08 | 75.86 | 0.8094 |
22 | 96.08 | 95.65 | 96.43 | 95.65 | 0.9984 |
23 | 97.14 | 94.55 | 100 | 100 | 0.9975 |
24 | 98.39 | 98.44 | 98.33 | 98.44 | 0.9982 |
Total | 96.15 | 96.11 | 96.38 | 96.33 | 0.98 |
Patient | Test Set Duration (h) | No. of Training Seizures | No. of Testing Seizures | No. of True Detections | Sensitivity (%) | FDR (%) | Latency (s) |
---|---|---|---|---|---|---|---|
1 | 37.38 | 3 | 4 | 4 | 100 | 0.11 | 19 |
2 | 34 | 2 | 1 | 1 | 100 | 0 | 36 |
3 | 34 | 4 | 3 | 3 | 100 | 0.56 | 16.3 |
4 | 149.38 | 2 | 2 | 2 | 100 | 0.39 | 9.5 |
5 | 37 | 2 | 3 | 3 | 100 | 0 | 33.3 |
6 | 48.52 | 4 | 3 | 3 | 100 | 1.26 | 6 |
7 | 63.05 | 1 | 2 | 2 | 100 | 0.03 | 19.5 |
8 | 19 | 1 | 4 | 4 | 100 | 0.58 | 64.25 |
9 | 62.27 | 2 | 2 | 2 | 100 | 0.61 | 20.5 |
10 | 44 | 3 | 4 | 4 | 100 | 0 | 8.75 |
11 | 33.79 | 1 | 2 | 2 | 100 | 0.06 | 4 |
12 | 16.67 | 4 | 15 | 12 | 80 | 0.42 | 3.08 |
13 | 29 | 4 | 7 | 7 | 100 | 0.86 | 19.14 |
14 | 22 | 4 | 4 | 4 | 100 | 0.05 | 9.5 |
15 | 34 | 6 | 14 | 11 | 78.57 | 0.71 | 21.09 |
17 | 19 | 2 | 2 | 2 | 100 | 0.05 | 41.5 |
18 | 31.63 | 4 | 3 | 3 | 100 | 0.41 | 15 |
19 | 27.93 | 2 | 2 | 2 | 100 | 0.11 | 11 |
20 | 24.63 | 3 | 4 | 4 | 100 | 0.77 | 6.75 |
21 | 31 | 2 | 2 | 2 | 100 | 0.97 | 37.25 |
22 | 30 | 1 | 2 | 2 | 100 | 0.17 | 23 |
23 | 21.6 | 1 | 4 | 3 | 75 | 0.69 | 31.33 |
24 | 15.3 | 6 | 8 | 7 | 87.5 | 0 | 18.43 |
Total | 865.15 | 64 | 97 | 89 | 96.57 | 0.38 | 20.62 |
Author | Method | Segment-Based | Event-Based | ||||||
---|---|---|---|---|---|---|---|---|---|
Accuracy (%) | Sensitivity (%) | Specificity (%) | Precision (%) | AUC (%) | Sensitivity (%) | FDR (/h) | Latency (s) | ||
Ansari et al. [49] | kNN | 89.06 | 85 | 89.06 | - | - | - | - | - |
Janjarasjitt et al. [50] | Wavelet + SVM | 96.87 | 72.99 | 98.13 | - | - | - | - | - |
He et al. [51] | GAT + BiLSTM | 98.52 | 97.75 | 94.34 | - | 96.81 | - | - | - |
Yao et al. [52] | Transfer learning + GRU | 96.31 | 90.12 | 96.32 | - | - | - | - | - |
Cura et al. [53] | SST + kNN | 95.1 | 90.3 | - | 93.4 | - | - | - | - |
Hu et al. [54] | LMD + BiLSTM | - | 93.61 | 91.85 | - | - | - | - | - |
Duan et al. [55] | Deep metric learning | 86.68 | 79.64 | 93.71 | - | - | - | - | - |
Shyu et al. [56] | Inception and Residual model | 98.34 | 73.08 | 98.79 | - | - | - | - | - |
Jiang et al. [57] | PMNet + SVM | 96.67 | 97.72 | 95.62 | - | - | - | - | - |
Gao et al. [58] | GAN + 1DCNN | 93.53 | 99.05 | - | - | - | - | - | - |
Zhang et al. [59] | Bi-GRU | 98.49 | 93.89 | 98.49 | - | - | 95.49 | 0.31 | - |
Yoshiba et al. [60] | ResNet | - | 88.73 | 98.98 | - | - | - | - | 7.39 |
Samiee et al. [61] | Sparse rational decomposition + LGBP | - | 70.40 | 99.10 | - | - | 91.13 | 0.35 | 5.98 |
This work | S-transform + Transformer | 96.15 | 96.11 | 96.38 | 96.33 | 98 | 96.57 | 0.38 | 20.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, X.; Liu, G.; Dong, X.; Li, C.; Li, H.; Cui, H.; Zhou, W. Automatic Seizure Detection Based on Stockwell Transform and Transformer. Sensors 2024, 24, 77. https://doi.org/10.3390/s24010077
Zhong X, Liu G, Dong X, Li C, Li H, Cui H, Zhou W. Automatic Seizure Detection Based on Stockwell Transform and Transformer. Sensors. 2024; 24(1):77. https://doi.org/10.3390/s24010077
Chicago/Turabian StyleZhong, Xiangwen, Guoyang Liu, Xingchen Dong, Chuanyu Li, Haotian Li, Haozhou Cui, and Weidong Zhou. 2024. "Automatic Seizure Detection Based on Stockwell Transform and Transformer" Sensors 24, no. 1: 77. https://doi.org/10.3390/s24010077
APA StyleZhong, X., Liu, G., Dong, X., Li, C., Li, H., Cui, H., & Zhou, W. (2024). Automatic Seizure Detection Based on Stockwell Transform and Transformer. Sensors, 24(1), 77. https://doi.org/10.3390/s24010077