Microcontroller-Optimized Measurement Electronics for Coherent Control Applications of NV Centers
Abstract
:1. Introduction
2. Background
2.1. Measurement Protocol
2.2. Detection of Spin Signals
3. Hardware Development
3.1. Bootstrapped Transimpedance Amplifier
3.2. Lock-In-Amplifier and Boxcar Averager
3.3. Microwave Source
3.4. Microcontroller
4. Setup and Optimization
Control of Rabi Frequency
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NV | nitrogen vacancy |
ZFS | zero-field splitting |
DAC | digital-to-analog converter |
CF | center frequency |
LIA | lock-in amplifier |
BCA | boxcar averager |
SPI | serial peripheral interface |
SRAM | static random-access memory |
DMA | direct memory access |
GPIO | general-purpose input/output |
BSRR | bit set and reset register |
ADC | analog-to-digital converter |
PLL | phase-locked loop |
TIA | transimpedance amplifier |
SNR | signal-to-noise ratio |
JFET | junction field effect transistor |
OpAmp | operational amplifier |
MFB | multiple feedback |
VCO | voltage-controlled oscillator |
TTL | transistor-transistor-logic |
HPHT | high-temperature, high-pressure |
PCB | printed circuit board |
CW | continuous wave |
SMA | Sub-Miniature Version A |
IC | integrated circuit |
RF | radio frequency |
AMP | amplifier |
FFT | fast Fourier transformation |
SLA | stereolithography |
Appendix A
Appendix A.1. Transimpedance Amplifier
Part | Value | Package |
---|---|---|
1.5 pF | 0603 | |
0.1 F | 0603 | |
R1 | 10 k | 0603 |
4.7 k | 0603 | |
2 k | 0603 | |
5 k | 0603 | |
23.5 k | 0603 | |
CPH3910 | CPH-3 | |
MMBTA06 | SOT-23 | |
PD | S5971 | TO-18 |
OpAmp | ADA4627-1 | SOIC_N |
Appendix A.2. Lock-In Amplifier
Part | Value | Package |
---|---|---|
10 nF | 0603 | |
4.7 F | 0603 | |
100 nF | 0603 | |
30 k | 0603 | |
300 kΩ | 0603 | |
1.1 M | 0603 | |
1.6 M | 0603 | |
160 k | 0603 | |
OpAmp | OPA4141AID | SOIC-14 |
Demodulator | AD630ANZ | SOIC-20 |
Appendix A.3. Microwave Source
Part | Value | Package |
---|---|---|
Crystal | TG2520SMN | TG2520 |
PLL | ADF4351BCP2 | CP-32-7 |
I/Q modulator | LTC5589IUF | QFN-24 |
switch | M3SWA2-63DRC+ | MCLP-12 |
GRF2012 | DFN-6 | |
2× GRF2012 | DFN-6 |
References
- Stürner, F.M.; Brenneis, A.; Buck, T.; Kassel, J.; Rölver, R.; Fuchs, T.; Savitsky, A.; Suter, D.; Grimmel, J.; Hengesbach, S.; et al. Integrated and Portable Magnetometer Based on Nitrogen–Vacancy Ensembles in Diamond. Adv. Quantum Technol. 2021, 4, 2000111. [Google Scholar] [CrossRef]
- Pogorzelski, J.; Horsthemke, L.; Homrighausen, J.; Stiegekötter, D.; Gregor, M.; Glösekötter, P. Compact and Fully Integrated LED Quantum Sensor Based on NV Centers in Diamond. Sensors 2024, 24, 743. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Nie, Y.; Du, B.; Jiang, J.; Zhang, Z.; Wang, Q.; Xu, R. A compact two-dimensional quantum magnetometer module based on the fixed-frequency optical detection of magnetic resonance using nitrogen vacancy centers. Appl. Phys. Lett. 2021, 119, 114005. [Google Scholar] [CrossRef]
- Zheng, D.; Ma, Z.; Guo, W.; Niu, L.; Wang, J.; Chai, X.; Li, Y.; Sugawara, Y.; Yu, C.; Shi, Y.; et al. A hand-held magnetometer based on an ensemble of nitrogen-vacancy centers in diamond. J. Phys. D Appl. Phys. 2020, 53, 155004. [Google Scholar] [CrossRef]
- Mariani, G.; Umemoto, A.; Nomura, S. A home-made portable device based on Arduino Uno for pulsed magnetic resonance of NV centers in diamond. AIP Adv. 2022, 12, 065321. [Google Scholar] [CrossRef]
- Song, S.; Li, X.; Zhu, X.; Chen, B.; Yu, Z.; Xu, N.; Chen, B. An integrated and scalable experimental system for nitrogen-vacancy ensemble magnetometry. Rev. Sci. Instruments 2023, 94, 014703. [Google Scholar] [CrossRef]
- Ran, G.; Zhang, Z.; Huang, K.; Cheng, L.; Qu, S.; Huang, Q.; Mao, X. A Highly Integrated, High-Sensitivity Magnetometer Based on Diamond Nitrogen-Vacancy Centers. IEEE Trans. Electron Devices 2023, 70, 3223–3227. [Google Scholar] [CrossRef]
- Sewani, V.K.; Vallabhapurapu, H.H.; Yang, Y.; Firgau, H.R.; Adambukulam, C.; Johnson, B.C.; Pla, J.J.; Laucht, A. Coherent control of NV- centers in diamond in a quantum teaching lab. Am. J. Phys. 2020, 88, 1156–1169. [Google Scholar] [CrossRef]
- Schirhagl, R.; Chang, K.; Loretz, M.; Degen, C.L. Nitrogen-vacancy centers in diamond: Nanoscale sensors for physics and biology. Annu. Rev. Phys. Chem. 2014, 65, 83–105. [Google Scholar] [CrossRef]
- Grosz, A.; Haji-Sheikh, M.J.; Mukhopadhyay, S.C. (Eds.) High Sensitivity Magnetometers; Smart Sensors, Measurement and Instrumentation; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Jensen, K.; Kehayias, P.; Budker, D. Magnetometry with Nitrogen-Vacancy Centers in Diamond. In High Sensitivity Magnetometers; Grosz, A., Haji-Sheikh, M.J., Mukhopadhyay, S.C., Eds.; Smart Sensors, Measurement and Instrumentation; Springer: Cham, Switzerland, 2017; Volume 19, pp. 553–576. [Google Scholar] [CrossRef]
- Horowitz, P.; Hill, W. The Art of Electronics, 3rd ed.; Cambridge University Press: Cambridge, NY, USA, 2015. [Google Scholar]
- Rondin, L.; Tetienne, J.P.; Hingant, T.; Roch, J.F.; Maletinsky, P.; Jacques, V. Magnetometry with nitrogen-vacancy defects in diamond. Rep. Prog. Phys. Phys. Soc. 2014, 77, 056503. [Google Scholar] [CrossRef]
- Mrozek, M.; Rudnicki, D.; Kehayias, P.; Jarmola, A.; Budker, D.; Gawlik, W. Longitudinal spin relaxation in nitrogen-vacancy ensembles in diamond. arXiv 2015, arXiv:1505.02253. [Google Scholar] [CrossRef]
- Hahn, E.L. Spin Echoes. Phys. Rev. 1950, 80, 580–594. [Google Scholar] [CrossRef]
- de Lange, G.; Wang, Z.H.; Ristè, D.; Dobrovitski, V.V.; Hanson, R. Universal dynamical decoupling of a single solid-state spin from a spin bath. Science 2010, 330, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, K.; Matsuzaki, Y.; Ashida, T.; Onoda, S.; Abe, H.; Ohshima, T.; Hatano, M.; Taniguchi, T.; Morishita, H.; Fujiwara, M.; et al. Experimental and Theoretical Analysis of Noise Strength and Environmental Correlation Time for Ensembles of Nitrogen-Vacancy Centers in Diamond. J. Phys. Soc. Jpn. 2020, 89, 054708. [Google Scholar] [CrossRef]
- Barry, J.F.; Schloss, J.M.; Bauch, E.; Turner, M.J.; Hart, C.A.; Pham, L.M.; Walsworth, R.L. Sensitivity optimization for NV-diamond magnetometry. Rev. Mod. Phys. 2020, 92, 015004. [Google Scholar] [CrossRef]
- Doherty, M.W.; Manson, N.B.; Delaney, P.; Jelezko, F.; Wrachtrup, J.; Hollenberg, L.C. The nitrogen-vacancy colour centre in diamond. Phys. Rep. 2013, 528, 1–45. [Google Scholar] [CrossRef]
- Hobbs, P.C.D. Building Electro-Optical Systems: Making It All Work, 3rd ed.; Wiley Series in Pure and Applied Optics, John Wiley & Sons Inc.: Hoboken, NJ, USA, 2022. [Google Scholar] [CrossRef]
- Ron Mancini. Op Amps for Everyone; Texas Instruments Incorporated: Dallas, TX, USA, 2002. [Google Scholar]
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. (Eds.) Numerical Recipes in C: The Art of Scientific Computing, 2nd ed.; Cambridge University Press: Cambridge, NY, USA, 2002. [Google Scholar]
- Sasaki, K.; Monnai, Y.; Saijo, S.; Fujita, R.; Watanabe, H.; Ishi-Hayase, J.; Itoh, K.M.; Abe, E. Broadband, large-area microwave antenna for optically-detected magnetic resonance of nitrogen-vacancy centers in diamond. arXiv 2016, arXiv:1605.04627. [Google Scholar] [CrossRef]
- Diggle, P.L.; D’Haenens-Johansson, U.F.S.; Green, B.L.; Welbourn, C.M.; Tran Thi, T.N.; Katrusha, A.; Wang, W.; Newton, M.E. Decoration of growth sector boundaries with nitrogen vacancy centers in as-grown single crystal high-pressure high-temperature synthetic diamond. Phys. Rev. Mater. 2020, 4, 093402. [Google Scholar] [CrossRef]
- CMSIS DSP Software Library, Version Number 5.9.0. 2022. Available online: https://www.keil.com/pack/doc/CMSIS/DSP/html/index.html (accessed on 12 October 2023).
- Qin, X.; Zhang, W.; Wang, L.; Zhao, Y.; Tong, Y.; Rong, X.; Du, J. An FPGA-Based Hardware Platform for the Control of Spin-Based Quantum Systems. IEEE Trans. Instrum. Meas. 2020, 69, 1127–1139. [Google Scholar] [CrossRef]
- Zhang, Z.D.; Yin, S.Y.; Wang, L.C.; Wang, Y.D.; Li, Y.F.; Tian, Z.N.; Chen, Q.D. Single NV centers array preparation and static magnetic field detection. Opt. Express 2022, 30, 32355–32365. [Google Scholar] [CrossRef]
- Bauch, E.; Singh, S.; Lee, J.; Hart, C.A.; Schloss, J.M.; Turner, M.J.; Barry, J.F.; Pham, L.M.; Bar-Gill, N.; Yelin, S.F.; et al. Decoherence of ensembles of nitrogen-vacancy centers in diamond. Phys. Rev. B 2020, 102, 134210. [Google Scholar] [CrossRef]
- Homrighausen, J.; Hoffmann, F.; Pogorzelski, J.; Glösekötter, P.; Gregor, M. Microscale Fiber-Integrated Vector Magnetometer with On-Tip Field Biasing using NV Ensembles in Diamond Microcystals. arXiv 2024, arXiv:2404.14089. [Google Scholar]
- Taylor, J.M.; Cappellaro, P.; Childress, L.; Jiang, L.; Budker, D.; Hemmer, P.R.; Yacoby, A.; Walsworth, R.; Lukin, M.D. High-sensitivity diamond magnetometer with nanoscale resolution. Nat. Phys. 2008, 4, 810–816. [Google Scholar] [CrossRef]
Coefficient | Butterworth | Formula |
---|---|---|
1 | ||
1 | ||
1 | ||
– | ||
– | ||
1 Hz | – | |
1.272 Hz | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stiegekötter, D.; Pogorzelski, J.; Horsthemke, L.; Hoffmann, F.; Gregor, M.; Glösekötter, P. Microcontroller-Optimized Measurement Electronics for Coherent Control Applications of NV Centers. Sensors 2024, 24, 3138. https://doi.org/10.3390/s24103138
Stiegekötter D, Pogorzelski J, Horsthemke L, Hoffmann F, Gregor M, Glösekötter P. Microcontroller-Optimized Measurement Electronics for Coherent Control Applications of NV Centers. Sensors. 2024; 24(10):3138. https://doi.org/10.3390/s24103138
Chicago/Turabian StyleStiegekötter, Dennis, Jens Pogorzelski, Ludwig Horsthemke, Frederik Hoffmann, Markus Gregor, and Peter Glösekötter. 2024. "Microcontroller-Optimized Measurement Electronics for Coherent Control Applications of NV Centers" Sensors 24, no. 10: 3138. https://doi.org/10.3390/s24103138
APA StyleStiegekötter, D., Pogorzelski, J., Horsthemke, L., Hoffmann, F., Gregor, M., & Glösekötter, P. (2024). Microcontroller-Optimized Measurement Electronics for Coherent Control Applications of NV Centers. Sensors, 24(10), 3138. https://doi.org/10.3390/s24103138