Cleaned Meta Pseudo Labels-Based Pet Behavior Recognition Using Time-Series Sensor Data
Abstract
:1. Introduction
2. Related Work
2.1. Behavior Recognition
2.2. Self-Training in Time-Series Data
3. Cleaned Pseudo Labels-Based Pet Behavior Recognition
3.1. Data Collection
3.2. Data Preprocessing
3.2.1. Remove Missing Values
3.2.2. Data Normalization
3.2.3. Data 4D Reshaping
3.3. Cleaned Meta Pseudo Labels-Based Pet Behavior Prediction
3.3.1. Unlabeled Data Augmentation for Consistency
3.3.2. Cleaned of Inactive Data
4. Experiment
4.1. Experimental Setup
4.2. Data Configuration
4.3. 4D Reshaping Supervised
4.4. Pseudo Label Experiment Result
4.5. Cleaned Meta Pseudo Labels Experiment Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ho, J.; Hussain, S.; Sparagano, O. Did the COVID-19 Pandemic Spark a Public Interest in Pet Adoption? Front. Vet. Sci. 2021, 8, 647308. [Google Scholar] [CrossRef] [PubMed]
- Animal Medicines Australia. Pets and the Pandemic: A Social Research Snapshot of Pets and People in the COVID-19 Era. 2021. Available online: https://animalmedicinesaustralia.org.au/wp-content/uploads/2021/08/AMAU005-PATP-Report21_v1.41_WEB.pdf (accessed on 16 August 2021).
- Mitek, A.; Jones, D.; Newell, A.; Vitale, S. Wearable Devices in Veterinary Health Care. Vet. Clin. Small Anim. Pract. 2022, 52, 1087–1098. [Google Scholar] [CrossRef]
- Damahe, L.B.; Tayade, M.; Nandekar, N.; Nathile, S.; Jadhav, V.; Pathade, A. Animal Health Monitoring Using Smart Wearable Device. In Proceedings of the International Conference on Signal & Data Processing, Singapore, 22–27 May 2022; Springer Nature: Singapore, 2022; pp. 497–507. [Google Scholar]
- Luayon, A.A.A.; Tolentino, G.F.Z.; Almazan, V.K.B.; Pascual, P.E.S.; Samonte, M.J.C. PetCare: A Smart Pet Care IoT Mobile Application. In Proceedings of the 10th International Conference on E-Education, E-Business, E-Management and E-Learning, Tokyo, Japan, 10–13 January 2019; pp. 427–431. [Google Scholar] [CrossRef]
- Ding, W. Role of Sensors Based on Machine Learning Health Monitoring in Athletes’ Wearable Heart Rate Monitoring. Hum. Centric Comput. Inf. Sci. 2023, 13, 16. [Google Scholar] [CrossRef]
- Kim, J.-K.; Lee, K.; Hong, S.G. Cognitive Load Recognition Based on T-Test and SHAP from Wristband Sensors. Hum. Centric Comput. Inf. Sci. 2023, 27, 13. [Google Scholar] [CrossRef]
- Alghazzawi, D.; Rabie, O.; Bamasaq, O.; Albeshri, A.; Asghar, M.Z. Sensor-Based Human Activity Recognition in Smart Homes Using Depthwise Separable Convolutions. Hum. Centric Comput. Inf. Sci. 2022, 12, 50. [Google Scholar] [CrossRef]
- Raubitzek, S.; Neubauer, T. Combining measures of signal complexity and machine learning for time series analysis: A review. Entropy 2021, 23, 1672. [Google Scholar] [CrossRef] [PubMed]
- Olsavszky, V.; Dosius, M.; Vladescu, C.; Benecke, J. Time series analysis and forecasting with automated machine learning on a national ICD-10 database. Int. J. Environ. Res. Public Health 2020, 17, 4979. [Google Scholar] [CrossRef] [PubMed]
- Shook, J.; Gangopadhyay, T.; Wu, L.; Ganapathysubramanian, B.; Sarkar, S.; Singh, A.K. Crop yield prediction integrating genotype and weather variables using deep learning. PLoS ONE 2021, 16, e0252402. [Google Scholar] [CrossRef] [PubMed]
- Pham, H.; Dai, Z.; Xie, Q.; Le, Q.V. Meta Pseudo Labels. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 11557–11568. [Google Scholar] [CrossRef]
- Xie, Q.; Luong, M.T.; Hovy, E.; Le, Q.V. Self-Training with Noisy Student Improves ImageNet Classification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10687–10698. [Google Scholar] [CrossRef]
- Amini, M.R.; Feofanov, V.; Pauletto, L.; Devijver, E.; Maximov, Y. Self-Training: A Survey. arXiv 2022, arXiv:2202.12040. [Google Scholar] [CrossRef]
- Yang, L.; Zhuo, W.; Qi, L.; Shi, Y.; Gao, Y. St++: Make Self-Training Work Better for Semi-Supervised Semantic Segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 4268–4277. [Google Scholar]
- Chaitanya, K.; Erdil, E.; Karani, N.; Konukoglu, E. Local Contrastive Loss with Pseudo-Label Based Self-Training for Semi-Supervised Medical Image Segmentation. Med. Image Anal. 2023, 87, 102792. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.C.; Pareek, A.; Jensen, M.; Lungren, M.P.; Yeung, S.; Chaudhari, A.S. Self-Supervised Learning for Medical Image Classification: A Systematic Review and Implementation Guidelines. NPJ Digit. Med. 2023, 6, 74. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Moon, N. Dog Behavior Recognition Based on Multimodal Data from a Camera and Wearable Device. Appl. Sci. 2022, 12, 3199. [Google Scholar] [CrossRef]
- Kim, H.; Moon, N. TN-GAN-Based Pet Behavior Prediction through Multiple-Dimension Time-Series Augmentation. Sensors 2023, 23, 4157. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Ali, S.; Kim, H.C. Activity Detection for the Wellbeing of Dogs Using Wearable Sensors Based on Deep Learning. IEEE Access 2022, 10, 53153–53163. [Google Scholar] [CrossRef]
- Kasnesis, P.; Doulgerakis, V.; Uzunidis, D.; Kogias, D.G.; Funcia, S.I.; González, M.B.; Giannousis, C.; Patrikakis, C.Z. Deep Learning Empowered Wearable-Based Behavior Recognition for Search and Rescue Dogs. Sensors 2022, 22, 993. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Song, Z.; King, I.; Xu, Z. A Survey on Deep Semi-Supervised Learning. IEEE Trans. Knowl. Data Eng. 2022, 35, 8934–8954. [Google Scholar] [CrossRef]
- Zou, Y.; Zhang, Z.; Zhang, H.; Li, C.L.; Bian, X.; Huang, J.B.; Pfister, T. Pseudoseg: Designing Pseudo Labels for Semantic Segmentation. arXiv 2020, arXiv:2010.09713. [Google Scholar] [CrossRef]
- Ding, K.; Wang, J.; Caverlee, J.; Liu, H. Meta Propagation Networks for Graph Few-Shot Semi-Supervised Learning. In Proceedings of the AAAI Conference on Artificial Intelligence, Online, 22 February–1 March 2022; Volume 36, pp. 6524–6531. [Google Scholar] [CrossRef]
- Xie, Q.; Dai, Z.; Hovy, E.; Luong, T.; Le, Q. Unsupervised Data Augmentation for Consistency Training. In Proceedings of the Advances in Neural Information Processing Systems, Online, 6–12 December 2020; Volume 33, pp. 6256–6268. [Google Scholar]
- Litrico, M.; Del Bue, A.; Morerio, P. Guiding Pseudo-Labels with Uncertainty Estimation for Source-Free Unsupervised Domain Adaptation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 7640–7650. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
Metric | Description |
---|---|
CPU | AMD Ryzen 5800X |
GPU | NVIDIA RTX 3090(2way) |
RAM | 64 GB |
CUDA | 11.8 |
cuDNN | 8.1 |
Torch | 2.2.1 |
Python | 3.8.6 |
No | Breed | Age (Month) | Weight (kg) |
---|---|---|---|
1 | Yorkshire terrier | 48 | 7.8 |
2 | Toy poodle | 76 | 4.7 |
3 | Toy poodle | 150 | 5 |
4 | Toy poodle | 130 | 1.5 |
5 | Mini poodle | 68 | 2.2 |
6 | Mini bichon | 94 | 3.1 |
7 | Mix dog | 36 | 4.6 |
8 | Border Collie | 24 | 14.5 |
9 | Mix dog | 24 | 6.3 |
10 | Mix dog | 16 | 15.7 |
11 | Mix dog | 24 | 20.3 |
12 | Mix dog | 12 | 13.2 |
No. (Label) | Behavior | Number of Data | Proportion of Data | Number of Training Data | Number of Test Data |
---|---|---|---|---|---|
0 | Stand | 2007 | 21.11% | 6536 | 1635 |
1 | Walk | 1414 | 14.90% | ||
2 | Sit | 2309 | 24.33% | ||
3 | Lying | 2101 | 22.14% | ||
4 | Eat | 1656 | 17.52% | ||
Labeled Total | 9487 | 100% | 80% | 20% | |
Unlabeled | 11,008 | 100% | 100% | 0% |
Dimension | Accuracy (%) | Recall (%) | F1_Score (%) | |
---|---|---|---|---|
ResNet18 | 1D | 80.48 | 78.62 | 79.54 |
ResNet18 | 4D | 81.28 | 75.57 | 78.32 |
ResNet30 | 1D | 82.00 | 77.26 | 79.57 |
ResNet30 | 4D | 82.43 | 78.33 | 80.33 |
ResNet50 | 1D | 82.46 | 76.47 | 79.56 |
ResNet50 | 4D | 82.93 | 78.15 | 80.47 |
Type | Labeled Data Ratio | UDA | Test Loss | ACC (%) | F1_Score (%) |
---|---|---|---|---|---|
Noise Student [13] | 20% | X | 1.42 | 68.53 | 26.35 |
40% | X | 0.86 | 77.54 | 56.56 | |
60% | X | 0.76 | 83.86 | 67.84 | |
80% | X | 0.65 | 86.36 | 76.69 | |
Meta Pseudo Labels [12] | 20% | О | 0.71 | 83.36 | 81.04 |
20% | X | 1.15 | 82.56 | 80.28 | |
40% | О | 0.56 | 86.11 | 84.34 | |
40% | X | 0.60 | 85.68 | 83.75 | |
60% | О | 0.44 | 87.18 | 86.186 | |
60% | X | 0.50 | 86.91 | 85.34 | |
80% | О | 0.40 | 88.19 | 86.56 | |
80% | X | 0.61 | 87.21 | 85.54 | |
Supervised | 100% | None | 0.58 | 82.93 | 80.47 |
Type | UDA | Inactive Data | Test Loss | ACC (%) | F1_Score (%) |
---|---|---|---|---|---|
Meta Pseudo Labels | О | О | 0.53 | 88.31 | 87.12 |
X | О | 0.45 | 86.85 | 84.56 | |
О | X | 0.46 | 86.91 | 85.04 | |
X | X | 0.44 | 86.23 | 84.32 | |
Supervised | X | X | 0.58 | 82.93 | 80.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Go, J.; Moon, N. Cleaned Meta Pseudo Labels-Based Pet Behavior Recognition Using Time-Series Sensor Data. Sensors 2024, 24, 3391. https://doi.org/10.3390/s24113391
Go J, Moon N. Cleaned Meta Pseudo Labels-Based Pet Behavior Recognition Using Time-Series Sensor Data. Sensors. 2024; 24(11):3391. https://doi.org/10.3390/s24113391
Chicago/Turabian StyleGo, Junhyeok, and Nammee Moon. 2024. "Cleaned Meta Pseudo Labels-Based Pet Behavior Recognition Using Time-Series Sensor Data" Sensors 24, no. 11: 3391. https://doi.org/10.3390/s24113391
APA StyleGo, J., & Moon, N. (2024). Cleaned Meta Pseudo Labels-Based Pet Behavior Recognition Using Time-Series Sensor Data. Sensors, 24(11), 3391. https://doi.org/10.3390/s24113391