Sensory–Motor Loop Adaptation in Boolean Network Robots
Abstract
:1. Introduction
2. The Model
2.1. Agent’s Model
2.2. Adaptive Mechanisms
- Change the effector nodes, leaving the features of the environment on which they act unchanged;
- Maintain the effector nodes, and change the features of the environment on which they act;
- Change both the effector nodes and the features of the environment on which they act.
3. Results
3.1. The Three Strategies
3.2. A Common Behavior
3.3. The Third Strategy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pfeifer, R.; Bongard, J. How the Body Shapes the Way We Think: A New View of Intelligence; MIT Press: Cambridge, MA, USA, 2007. [Google Scholar]
- Pfeifer, R.; Scheier, C. Understanding Intelligence; The MIT Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Nolfi, S.; Floreano, D. Evolutionary Robotics; The MIT Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Ashby, W. Design for a Brain: The Origin of Adaptive Behaviour, 2nd ed.; Butler & Tanner Ltd.: Leipheim, Germany, 1954. [Google Scholar]
- Beer, R. A dynamical systems perspective on agent-environment interaction. Artif. Intell. 1995, 72, 173–215. [Google Scholar] [CrossRef]
- Bich, L.; Moreno, A. The role of regulation in the origin and synthetic modelling of minimal cognition. Biosystems 2016, 148, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Cangelosi, A.; Asada, M. (Eds.) Cognitive Robotics; Intelligent Robotics and Autonomous Agents Series; The MIT Press: Cambridge, MA, USA, 2022. [Google Scholar]
- Cariani, P. To evolve an ear. epistemological implications of gordon pask’s electrochemical devices. Syst. Res. 1993, 10, 19–33. [Google Scholar] [CrossRef]
- Di Paolo, E. Organismically-inspired robotics: Homeostatic adaptation and teleology beyond the closed sensorimotor loop. In Dynamical Systems Approach to Embodiment and Sociality; Murase, K., Asakura, T., Eds.; Advanced Knowledge International: Adelaide, Australia, 2003; pp. 19–42. [Google Scholar]
- Hoffmeyer, J. Biosemiotics: An Examination into the Signs of Life and the Life of Signs; University of Chicago Press: Chicago, IL, USA, 2008. [Google Scholar]
- Kull, K. On semiosis, umwelt, and semiosphere. Semiotica 1998, 120, 299–310. [Google Scholar]
- Olsson, L.; Nehaniv, C.; Polani, D. From unknown sensors and actuators to actions grounded in sensorimotor perceptions. Connect. Sci. 2006, 18, 121–144. [Google Scholar] [CrossRef]
- Pfeifer, R.; Lungarella, M.; Iida, F. Self-organization, embodiment, and biologically inspired robotics. Science 2007, 318, 1088–1093. [Google Scholar] [CrossRef] [PubMed]
- Pezzulo, G.; Rigoli, F.; Friston, K. Active inference, homeostatic regulation and adaptive behavioural control. Prog. Neurobiol. 2015, 134, 17–35. [Google Scholar] [CrossRef] [PubMed]
- Harvey, I. Homeostasis and rein control: From daisyworld to active perception. In Artificial Life IX: Proceedings of the Ninth International Conference on the Simulation and Synthesis of Living Systems, Boston, MA, USA, 12 September 2004; The MIT Press: Cambridge, MA, USA, 2004. [Google Scholar]
- Braccini, M.; Roli, A.; Barbieri, E.; Kauffman, S. On the criticality of adaptive boolean network robots. Entropy 2022, 24, 1368. [Google Scholar] [CrossRef] [PubMed]
- Roli, A.; Manfroni, M.; Pinciroli, C.; Birattari, M. On the design of Boolean network robots. In Applications of Evolutionary Computation; Di Chio, C., Cagnoni, S., Cotta, C., Ebner, M., Ekárt, A., Esparcia-Alcázar, A., Merelo, J., Neri, F., Preuss, M., Richter, H., et al., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6624, pp. 43–52. [Google Scholar]
- Kauffman, S. Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 1969, 22, 437–467. [Google Scholar] [CrossRef] [PubMed]
- Kauffman, S. The Origins of Order: Self-Organization and Selection in Evolution; Oxford University Press: Oxford, UK, 1993. [Google Scholar]
- Bastolla, U.; Parisi, G. A numerical study of the critical line of Kauffman networks. J. Theor. Biol. 1997, 187, 117–133. [Google Scholar] [CrossRef] [PubMed]
- Derrida, B.; Pomeau, Y. Random networks of automata: A simple annealed approximation. Europhys. Lett. 1986, 1, 45–49. [Google Scholar] [CrossRef]
- Hidalgo, J.; Grilli, J.; Suweis, S.; Muñoz, M.; Banavar, J.; Maritan, A. Information-based fitness and the emergence of criticality in living systems. Proc. Natl. Acad. Sci. USA 2014, 111, 10095–10100. [Google Scholar] [CrossRef] [PubMed]
- Mora, T.; Bialek, W. Are biological systems poised at criticality? J. Stat. Phys. 2011, 144, 268–302. [Google Scholar] [CrossRef]
- Muñoz, M. Colloquium: Criticality and dynamical scaling in living systems. Rev. Mod. Phys. 2018, 90, 031001. [Google Scholar] [CrossRef]
- Teuscher, C. Revisiting the edge of chaos: Again? Biosystems 2022, 218, 104693. [Google Scholar] [CrossRef] [PubMed]
- Balleza, E.; Alvarez-Buylla, E.; Chaos, A.; Kauffman, S.; Shmulevich, I.; Aldana, M. Critical dynamics in genetic regulatory networks: Examples from four kingdoms. PLoS ONE 2008, 3, e2456. [Google Scholar] [CrossRef] [PubMed]
- Braccini, M.; Roli, A.; Kauffman, S. A novel online adaptation mechanism in artificial systems provides phenotypic plasticity. In Artificial Life and Evolutionary Computation; Schneider, J.J., Weyland, M.S., Flumini, D., Füchslin, R.M., Eds.; Springer Nature: Geneva, Switzerland, 2022; pp. 121–132. [Google Scholar]
- Krawitz, P.; Shmulevich, I. Basin entropy in boolean network ensembles. Phys. Rev. Lett. 2007, 98, 158701. [Google Scholar] [CrossRef] [PubMed]
- Nykter, M.; Price, N.; Aldana, M.; Ramsey, S.; Kauffman, S.; Hood, L.; Yli-Harja, O.; Shmulevich, I. Gene expression dynamics in the macrophage exhibit criticality. Proc. Natl. Acad. Sci. USA 2008, 105, 1897–1900. [Google Scholar] [CrossRef]
- Serra, R.; Villani, M.; Semeria, A. Genetic network models and statistical properties of gene expression data in knock-out experiments. J. Theor. Biol. 2004, 227, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Shmulevich, I.; Kauffman, S.; Aldana, M. Eukaryotic cells are dynamically ordered or critical but not chaotic. Proc. Natl. Acad. Sci. USA 2005, 102, 13439–13444. [Google Scholar] [CrossRef] [PubMed]
- Torres-Sosa, C.; Huang, S.; Aldana, M. Criticality is an emergent property of genetic networks that exhibit evolvability. PLOS Comput. Biol. 2012, 8, e1002669. [Google Scholar] [CrossRef] [PubMed]
- Villani, M.; La Rocca, L.; Kauffman, S.; Serra, R. Dynamical criticality in gene regulatory networks. Complexity 2018, 14, 5980636. [Google Scholar] [CrossRef]
- Braccini, M.; Roli, A.; Villani, M.; Serra, R. Dynamical properties and path dependence in a gene-network model of cell differentiation. Soft Comput. 2021, 25, 6775–6787. [Google Scholar] [CrossRef]
- Brooks, R. A robust layered control system for a mobile robot. IEEE J. Robot. Autom. 1986, RA-2, 14–23. [Google Scholar] [CrossRef]
- Mondada, F.; Bonani, M.; Raemy, X.; Pugh, J.; Cianci, C.; Klaptocz, A.; Magnenat, S.; Zufferey, J.-C.; Floreano, D.; Martinoli, A. The e-puck, a robot designed for education in engineering. In Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions, Castelo Branco, Portugal, 7 May 2009; IPCB Instituto Politécnico de Castelo Branco: Castelo Branco, Portugal, 2009; Volume 1, pp. 59–65. [Google Scholar]
- Bredeche, N.; Haasdijk, E.; Eiben, A. On-line, on-board evolution of robot controllers. In Proceedings of the International Conference on Artificial Evolution Evolution Artificielle, Strasbourg, France, 26–28 October 2009; Springer: Berlin/Heidelberg, Germany; pp. 110–121. [Google Scholar]
- Feola, L.; Trianni, V. Adaptive strategies for team formation in minimalist robot swarms. IEEE Robot. Autom. Lett. 2022, 7, 4079–4085. [Google Scholar] [CrossRef]
- Floreano, D.; Mondada, F. Evolution of homing navigation in a real mobile robot. IEEE Trans. Syst. Man Cybern. Part B Cybern. 1996, 26, 396–407. [Google Scholar] [CrossRef] [PubMed]
- Francesca, G.; Brambilla, M.; Brutschy, A.; Garattoni, L.; Miletitch, R.; Podevijn, G.; Reina, A.; Soleymani, T.; Salvaro, M.; Pinciroli, C.; et al. Automode-chocolate: Automatic design of control software for robot swarms. Swarm Intell. 2015, 9, 125–152. [Google Scholar] [CrossRef]
- Howard, D.; Eiben, A.; Kennedy, D.; Mouret, J.-B.; Valencia, P.; Winkler, D. Evolving embodied intelligence from materials to machines. Nat. Mach. Intell. 2019, 1, 12–19. [Google Scholar] [CrossRef]
- Salman, M.; Garzón Ramos, D.; Birattari, M. Automatic design of stigmergy-based behaviours for robot swarms. Commun. Eng. 2024, 3, 30. [Google Scholar] [CrossRef]
- Parr, T.; Pezzulo, G.; Friston, K. Active Inference: The Free Energy Principle in Mind, Brain, and Behavior; MIT Press: Cambridge, MA, USA, 2022. [Google Scholar]
- Baldini, P.; Roli, A.; Braccini, M. On the performance of online adaptation of robots controlled by nanowire networks. IEEE Access 2023, 11, 144408–144420. [Google Scholar] [CrossRef]
- Cariani, P. Creating new informational primitives in minds and machines. In Computers and Creativity; Springer: Berlin/Heidelberg, Germany, 2012; pp. 383–417. [Google Scholar]
- Cariani, P. The homeostat as embodiment of adaptive control. Int. J. Gen. Syst. 2009, 38, 139–154. [Google Scholar] [CrossRef]
- Man, K.; Damasio, A. Homeostasis and soft robotics in the design of feeling machines. Nat. Mach. Intell. 2019, 1, 446–452. [Google Scholar] [CrossRef]
Average Performance | |||
---|---|---|---|
Ordered RBNs | Critical RBNs | Chaotic RBNs | |
STRAT. 1 | 0 | 0.075 | 0.196 |
STRAT. 2 | 0 | 0.131 | 0.264 |
STRAT. 3 | 0 | 0.194 | 0.308 |
Variable | Value | Variable | Value |
---|---|---|---|
trial_number | 2800 | Number of nodes (agent) | 100 |
trial_step | 20 | Number of nodes (environment) | 50 |
w | 5 | Average connectivity k | 3 |
prob_change_sensor | 0; | Bias: Ordered ensemble | 0.1 |
prob_change_effector | 0; 0.5 | Bias: Critical ensemble | 0.21 |
prob_change_feature | 0; 0.5 | Bias: Disordered ensemble | 0.5 |
# RBNs | Critical RBNs |
---|---|
Improved | 266 |
Did not improve but perturbed | 173 |
Not perturbed | 61 |
Critical RBNs (Only the Improved Ones) | Chaotic RBNs | |
---|---|---|
MIN | 0.001 | 0.115 |
MAX | 1.000 | 0.658 |
AVERAGE | 0.382 | 0.310 |
MEDIAN | 0.377 | 0.300 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Braccini, M.; Gardinazzi, Y.; Roli, A.; Villani, M. Sensory–Motor Loop Adaptation in Boolean Network Robots. Sensors 2024, 24, 3393. https://doi.org/10.3390/s24113393
Braccini M, Gardinazzi Y, Roli A, Villani M. Sensory–Motor Loop Adaptation in Boolean Network Robots. Sensors. 2024; 24(11):3393. https://doi.org/10.3390/s24113393
Chicago/Turabian StyleBraccini, Michele, Yuri Gardinazzi, Andrea Roli, and Marco Villani. 2024. "Sensory–Motor Loop Adaptation in Boolean Network Robots" Sensors 24, no. 11: 3393. https://doi.org/10.3390/s24113393
APA StyleBraccini, M., Gardinazzi, Y., Roli, A., & Villani, M. (2024). Sensory–Motor Loop Adaptation in Boolean Network Robots. Sensors, 24(11), 3393. https://doi.org/10.3390/s24113393