An Advanced Tool Wear Forecasting Technique with Uncertainty Quantification Using Bayesian Inference and Support Vector Regression
Abstract
:1. Introduction
2. Comprehensive Flow of the Method
3. Degradation Feature Modelling Based on the Stochastic Process
3.1. Brownian Motion Stochastic Process
3.2. Bayesian Parameter Updates
4. Tool Wear Prediction with Uncertainty Quantification
4.1. Degradation Feature Prediction Using Random Sampling
4.2. SVR Model for Tool Wear Prediction
5. Experimental Study
5.1. Information of the Tool Wear Dataset
5.2. Degradation Modelling of Multiple Features
5.3. Wear Prediction Using the SVR Model
5.4. Comparison
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ye, L.; Zhang, W.H.; Cui, Y.C.; Deng, S.R. Dynamic Evaluation of the Degradation Process of Vibration Performance for Machine Tool Spindle Bearings. Sensors 2023, 23, 5325. [Google Scholar] [CrossRef] [PubMed]
- Cai, G.G.; Chen, X.F.; Li, B.; Chen, B.J.; He, Z.J. Operation Reliability Assessment for Cutting Tools by Applying a Proportional Covariate Model to Condition Monitoring Information. Sensors 2012, 12, 12964–12987. [Google Scholar] [CrossRef] [PubMed]
- Azmi, A.I. Monitoring of tool wear using measured machining forces and neuro-fuzzy modelling approaches during machining of GFRP composites. Adv. Eng. Softw. 2015, 82, 53–64. [Google Scholar] [CrossRef]
- He, X.C. Recent development in reliability analysis of NC machine tools. Int. J. Adv. Manuf. Technol. 2016, 85, 115–131. [Google Scholar] [CrossRef]
- Lai, X.W.; Zhang, K.; Zheng, Q.; Li, Z.X.; Ding, G.F.; Ding, K. A frequency-spatial hybrid attention mechanism improved tool wear state recognition method guided by structure and process parameters. Measurement 2023, 214, 112833. [Google Scholar] [CrossRef]
- Kuntoglu, M.; Aslan, A.; Pimenov, D.Y.; Usca, Ü.; Salur, E.; Gupta, M.K.; Mikolajczyk, T.; Giasin, K.; Kaplonek, W.; Sharma, S. A Review of Indirect Tool Condition Monitoring Systems and Decision-Making Methods in Turning: Critical Analysis and Trends. Sensors 2021, 21, 108. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.Q.; Jin, Z.J.; Zhao, Y.; Niu, L.; Guo, J. A comparative study on tool life and wear of uncoated and coated cutting tools in turning of tungsten heavy alloys. Wear 2021, 482, 203929. [Google Scholar] [CrossRef]
- Cheng, Y.N.; Gai, X.Y.; Guan, R.; Jin, Y.B.; Lu, M.D.; Ding, Y. Tool wear intelligent monitoring techniques in cutting: A review. J. Mech. Sci. Technol. 2023, 37, 289–303. [Google Scholar] [CrossRef]
- Bernini, L.; Malguzzi, U.; Albertelli, P.; Monno, M. Hybrid prognostics to estimate cutting inserts remaining useful life based on direct wear observation. Mech. Syst. Signal Process. 2024, 210, 111163. [Google Scholar] [CrossRef]
- Castejón, M.; Alegre, E.; Barreiro, J.; Hernández, L.K. On-line tool wear monitoring using geometric descriptors from digital images. Int. J. Mach. Tools Manuf. 2007, 47, 1847–1853. [Google Scholar] [CrossRef]
- Wang, Z.R.; Zou, Y.F.; Zhang, F. A Machine Vision Approach to Tool Wear Monitoring Based on the Image of Workpiece Surface Texture. In Proceedings of the International Conference on Advances in Materials and Manufacturing Processes, Shenzhen, China, 6–8 November 2011; pp. 412–416. [Google Scholar]
- Niaki, F.A.; Mears, L. A probabilistic-based study on fused direct and indirect methods for tracking tool flank wear of Rene-108, nickel-based alloy. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2018, 232, 2030–2043. [Google Scholar] [CrossRef]
- Pimenov, D.Y.; Gupta, M.K.; da Silva, L.R.R.; Kiran, M.; Khanna, N.; Krolczyk, G.M. Application of measurement systems in tool condition monitoring of Milling: A review of measurement science approach. Measurement 2022, 199, 111503. [Google Scholar] [CrossRef]
- Ünal, P.; Deveci, B.U.; Özbayoglu, A.M. A Review: Sensors Used in Tool Wear Monitoring and Prediction. In Proceedings of the 18th International Conference on Mobile Web and Intelligent Information Systems (MobiWIS), Rome, Italy, 22–24 August 2022; pp. 193–205. [Google Scholar]
- Wang, J.J.; Li, Y.L.; Zhao, R.; Gao, R.X. Physics guided neural network for machining tool wear prediction. J. Manuf. Syst. 2020, 57, 298–310. [Google Scholar] [CrossRef]
- Xu, W.X.; Miao, H.H.; Zhao, Z.B.; Liu, J.X.; Sun, C.; Yan, R.Q. Multi-Scale Convolutional Gated Recurrent Unit Networks for Tool Wear Prediction in Smart Manufacturing. Chin. J. Mech. Eng. 2021, 34, 53. [Google Scholar] [CrossRef]
- Qin, Y.Y.; Liu, X.L.; Yue, C.X.; Zhao, M.W.; Wei, X.D.; Wang, L.H. Tool wear identification and prediction method based on stack sparse self-coding network. J. Manuf. Syst. 2023, 68, 72–84. [Google Scholar] [CrossRef]
- Cheng, Y.N.; Jin, Y.B.; Gai, X.Y.; Guan, R.; Lu, M.D. Prediction of tool wear in milling process based on BP neural network optimized by firefly algorithm. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2023. [Google Scholar] [CrossRef]
- Wang, C.H.; Shen, B. Auxiliary input-enhanced siamese neural network: A robust tool wear prediction framework with improved feature extraction and generalization ability. Mech. Syst. Signal Process. 2024, 211, 111243. [Google Scholar] [CrossRef]
- Kong, D.D.; Chen, Y.J.; Li, N.; Duan, C.Q.; Lu, L.X.; Chen, D.X. Relevance vector machine for tool wear prediction. Mech. Syst. Signal Process. 2019, 127, 573–594. [Google Scholar] [CrossRef]
- Wang, J.Q.; Xiang, Z.; Cheng, X.; Zhou, J.; Li, W.Q. Tool Wear State Identification Based on SVM Optimized by the Improved Northern Goshawk Optimization. Sensors 2023, 23, 8591. [Google Scholar] [CrossRef]
- Kuntoglu, M.; Saglam, H. Investigation of signal behaviors for sensor fusion with tool condition monitoring system in turning. Measurement 2021, 173, 108582. [Google Scholar] [CrossRef]
- Buj-Corral, I.; Sender, P.; Luis-Pérez, C.J. Multi-objective optimization of tool wear, surface roughness, and material removal rate in finishing honing processes using adaptive neural fuzzy inference systems. Tribol. Int. 2023, 182, 108354. [Google Scholar] [CrossRef]
- Wang, J.J.; Yan, J.X.; Li, C.; Gao, R.O.E.; Zhao, R. Deep heterogeneous GRU model for predictive analytics in smart manufacturing: Application to tool wear prediction. Comput. Ind. 2019, 111, 1–14. [Google Scholar] [CrossRef]
- Shah, M.L.; Borade, H.; Sanghavi, V.; Purohit, A.; Wankhede, V.; Vakharia, V. Enhancing Tool Wear Prediction Accuracy Using Walsh-Hadamard Transform, DCGAN and Dragonfly Algorithm-Based Feature Selection. Sensors 2023, 23, 3833. [Google Scholar] [CrossRef]
- Liu, Q.; Li, D.K.; Ma, J.; Wei, X.D.; Bai, Z.Y. A multi-input parallel convolutional attention network for tool wear monitoring. Int. J. Comput. Integr. Manuf. 2023. [Google Scholar] [CrossRef]
- Abdeltawab, A.; Xi, Z.; Zhang, L.J. Tool wear classification based on maximal overlap discrete wavelet transform and hybrid deep learning model. Int. J. Adv. Manuf. Technol. 2024, 130, 2443–2456. [Google Scholar] [CrossRef]
- Si, X.S.; Wang, W.B.; Hu, C.H.; Zhou, D.H.; Pecht, M.G. Remaining Useful Life Estimation Based on a Nonlinear Diffusion Degradation Process. IEEE Trans. Reliab. 2012, 61, 50–67. [Google Scholar] [CrossRef]
- Yan, B.X.; Ma, X.B.; Huang, G.F.; Zhao, Y. Two-stage physics-based Wiener process models for online RUL prediction in field vibration data. Mech. Syst. Signal Process. 2021, 152, 107378. [Google Scholar] [CrossRef]
- Chang, C.C.; Lin, C.J. LIBSVM: A Library for Support Vector Machines. Acm Trans. Intell. Syst. Technol. 2011, 2, 1–27. [Google Scholar] [CrossRef]
- Smola, A.J.; Schölkopf, B. A tutorial on support vector regression. Stat. Comput. 2004, 14, 199–222. [Google Scholar] [CrossRef]
- Prognostics and Health Management Society (PHM Society). Available online: https://phmsociety.org/phm_competition/2010-phm-society-conference-data-challenge/ (accessed on 1 April 2023).
Spindle Speed | Feed Rate | Radial Cutting Depth (y-Axis) | Axial Cutting Depth (z-Axis) |
---|---|---|---|
10,400 rpm | 1555 mm/min | 0.125 mm | 0.2 mm |
Number | Feature | Calculation Formula |
---|---|---|
1 | RMS of vibration (z-direction) | |
2 | Variance of vibration (z-direction) | |
3 | Root square amplitude of vibration (z-direction) | |
4 | Peak of vibration (z-direction) | |
5 | Margin of vibration (z-direction) |
Feature | Parameters | Value |
---|---|---|
RMS of vibration (z-direction) | 6.395 × 10−2 | |
3.802 × 10−3 | ||
1.048 × 10−5 | ||
Variance of vibration (z-direction) | 3.098 × 10−3 | |
8.811 × 10−3 | ||
1.552 × 10−6 | ||
Root square amplitude of vibration (z-direction) | 2.141 × 10−1 | |
1.679 × 10−3 | ||
1.078 × 10−5 | ||
Peak of vibration (z-direction) | 3.175 × 10−1 | |
4.285 × 10−3 | ||
5.450 × 10−3 | ||
Margin of vibration (z-direction) | 1.567 × 100 | |
2.326 × 10−3 | ||
5.499 × 10−2 |
Proposed Method | Comparison SVR | |
---|---|---|
Variance | 40.9147 | 97.5408 |
RMSE | 72.3540 | 135.6722 |
MRE | 0.0686 | 0.0968 |
Correlation coefficient | 0.9712 | 0.9231 |
Method | Training Time (s) | Total Online Prediction Time (s) | Average Online Prediction Time (s) |
---|---|---|---|
Proposed model | 61.3696 | 35.1706 | 0.1117 |
Comparison SVR | 97.2654 | 0.0509 | 0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rong, Z.; Li, Y.; Wu, L.; Zhang, C.; Li, J. An Advanced Tool Wear Forecasting Technique with Uncertainty Quantification Using Bayesian Inference and Support Vector Regression. Sensors 2024, 24, 3394. https://doi.org/10.3390/s24113394
Rong Z, Li Y, Wu L, Zhang C, Li J. An Advanced Tool Wear Forecasting Technique with Uncertainty Quantification Using Bayesian Inference and Support Vector Regression. Sensors. 2024; 24(11):3394. https://doi.org/10.3390/s24113394
Chicago/Turabian StyleRong, Zhiming, Yuxiong Li, Li Wu, Chong Zhang, and Jialin Li. 2024. "An Advanced Tool Wear Forecasting Technique with Uncertainty Quantification Using Bayesian Inference and Support Vector Regression" Sensors 24, no. 11: 3394. https://doi.org/10.3390/s24113394
APA StyleRong, Z., Li, Y., Wu, L., Zhang, C., & Li, J. (2024). An Advanced Tool Wear Forecasting Technique with Uncertainty Quantification Using Bayesian Inference and Support Vector Regression. Sensors, 24(11), 3394. https://doi.org/10.3390/s24113394