Multi-Branch Network for Color Image Denoising Using Dilated Convolution and Attention Mechanisms
Abstract
:1. Introduction
- A multi-branch network that effectively improves the performance of image-denoising tasks is presented.
- A PCM that uses dilated convolution is introduced to enlarge the receptive field and successfully address the loss of global information.
- An RBAM is designed to eliminate degraded features and reduce undesired artifacts.
- Comprehensive experiments are performed on several datasets, proving that the proposed method surpasses other competitive methods.
2. Related Work
3. Proposed Method
3.1. Network Architecture
3.1.1. Multi-Branch Network
3.1.2. Pyramid Context Module (PCM)
3.1.3. Residual Bottleneck Attention Module (RBAM)
3.2. Loss Function
4. Experimental Results
4.1. Experimental Setting
4.2. Analysis of Experimental Results
4.3. Ablation Study
4.3.1. Effectiveness of PCM
4.3.2. Effectiveness of RBAM
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hartbauer, M. A Simple Denoising Algorithm for Real-World Noisy Camera Images. J. Imaging 2023, 9, 185. [Google Scholar] [CrossRef] [PubMed]
- Duong, M.T.; Lee, S.; Hong, M.C. DMT-Net: Deep Multiple Networks for Low-Light Image Enhancement Based on Retinex Model. IEEE Access 2023, 11, 132147–132161. [Google Scholar] [CrossRef]
- Li, X.; Hu, X.; Chen, X.; Fan, J.; Zhao, Z.; Wu, J.; Wang, H.; Dai, Q. Spatial redundancy transformer for self-supervised fluorescence image denoising. Nat. Comput. Sci. 2023, 3, 1067–1080. [Google Scholar] [CrossRef] [PubMed]
- Oliveira-Saraiva, D.; Mendes, J.; Leote, J.; Gonzalez, F.A.; Garcia, N.; Ferreira, H.A.; Matela, N. Make It Less Complex: Autoencoder for Speckle Noise Removal—Application to Breast and Lung Ultrasound. J. Imaging 2023, 9, 217. [Google Scholar] [CrossRef] [PubMed]
- Krichen, M. Convolutional neural networks: A survey. Computers 2023, 12, 151. [Google Scholar] [CrossRef]
- Tian, C.; Fei, L.; Zheng, W.; Xu, Y.; Zuo, W.; Lin, C.W. Deep learning on image denoising: An overview. Neural Netw. 2020, 131, 251–275. [Google Scholar] [CrossRef] [PubMed]
- Izadi, S.; Sutton, D.; Hamarneh, G. Image denoising in the deep learning era. Artif. Intell. Rev. 2023, 56, 5929–5974. [Google Scholar] [CrossRef]
- Islam, M.T.; Rahman, S.M.; Ahmad, M.O.; Swamy, M. Mixed Gaussian-impulse noise reduction from images using convolutional neural network. Signal Process. Image Commun. 2018, 68, 26–41. [Google Scholar] [CrossRef]
- Solovyeva, E.; Abdullah, A. Dual autoencoder network with separable convolutional layers for denoising and deblurring images. J. Imaging 2022, 8, 250. [Google Scholar] [CrossRef] [PubMed]
- Paul, E.; Sabeenian, R. Modified convolutional neural network with pseudo-CNN for removing nonlinear noise in digital images. Displays 2022, 74, 102258. [Google Scholar] [CrossRef]
- Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155. [Google Scholar] [CrossRef]
- Zhang, K.; Li, Y.; Zuo, W.; Zhang, L.; Van Gool, L.; Timofte, R. Plug-and-play image restoration with deep denoiser prior. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 6360–6376. [Google Scholar] [CrossRef]
- Tai, Y.; Yang, J.; Liu, X.; Xu, C. Memnet: A persistent memory network for image restoration. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 4539–4547. [Google Scholar]
- Liu, D.; Wen, B.; Fan, Y.; Loy, C.C.; Huang, T.S. Non-local recurrent network for image restoration. Adv. Neural Inf. Process. Syst. 2018, 31. [Google Scholar]
- Zhang, Y.; Li, K.; Li, K.; Zhong, B.; Fu, Y. Residual non-local attention networks for image restoration. arXiv 2019, arXiv:1903.10082. [Google Scholar]
- Zhang, K.; Zuo, W.; Gu, S.; Zhang, L. Learning deep CNN denoiser prior for image restoration. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 3929–3938. [Google Scholar]
- Zhang, K.; Zuo, W.; Zhang, L. FFDNet: Toward a fast and flexible solution for CNN-based image denoising. IEEE Trans. Image Process. 2018, 27, 4608–4622. [Google Scholar] [CrossRef]
- Oh, J.; Hong, M.C. Low-light image enhancement using hybrid deep-learning and mixed-norm loss functions. Sensors 2022, 22, 6904. [Google Scholar] [CrossRef]
- Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 2007, 16, 2080–2095. [Google Scholar] [CrossRef]
- Chang, S.; Yu, B.; Vetterli, M. Adaptive wavelet thresholding for image denoising and compression. IEEE Trans. Image Process. 2000, 9, 1532–1546. [Google Scholar] [CrossRef]
- Suresh, S.; Lal, S.; Chen, C.; Celik, T. Multispectral satellite image denoising via adaptive cuckoo search-based Wiener filter. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4334–4345. [Google Scholar] [CrossRef]
- Hasan, M.; El-Sakka, M.R. Improved BM3D image denoising using SSIM-optimized Wiener filter. EURASIP J. Image Video Process. 2018, 2018, 25. [Google Scholar] [CrossRef]
- Ishikawa, A.; Tajima, H.; Fukushima, N. Halide implementation of weighted median filter. In Proceedings of the International Workshop on Advanced Imaging Technology (IWAIT), Yogyakarta, Indonesia, 5–7 January 2020; Volume 11515, pp. 535–539. [Google Scholar]
- Mafi, M.; Rajaei, H.; Cabrerizo, M.; Adjouadi, M. A robust edge detection approach in the presence of high impulse noise intensity through switching adaptive median and fixed weighted mean filtering. IEEE Trans. Image Process. 2018, 27, 5475–5490. [Google Scholar] [CrossRef]
- Iqbal, N.; Ali, S.; Khan, I.; Lee, B.M. Adaptive edge preserving weighted mean filter for removing random-valued impulse noise. Symmetry 2019, 11, 395. [Google Scholar] [CrossRef]
- Thanh, D.N.H.; Hien, N.N.; Prasath, S. Adaptive total variation L1 regularization for salt and pepper image denoising. Optik 2020, 208, 163677. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, L.; He, W.; Zhang, L. Hyperspectral image denoising with total variation regularization and nonlocal low-rank tensor decomposition. IEEE Trans. Geosci. Remote Sens. 2019, 58, 3071–3084. [Google Scholar] [CrossRef]
- Gurrola-Ramos, J.; Dalmau, O.; Alarcón, T.E. A residual dense u-net neural network for image denoising. IEEE Access 2021, 9, 31742–31754. [Google Scholar] [CrossRef]
- Ali, A.M.; Benjdira, B.; Koubaa, A.; El-Shafai, W.; Khan, Z.; Boulila, W. Vision transformers in image restoration: A survey. Sensors 2023, 23, 2385. [Google Scholar] [CrossRef]
- Jamil, S.; Jalil Piran, M.; Kwon, O.J. A comprehensive survey of transformers for computer vision. Drones 2023, 7, 287. [Google Scholar] [CrossRef]
- Fan, C.M.; Liu, T.J.; Liu, K.H. SUNet: Swin transformer UNet for image denoising. In Proceedings of the 2022 IEEE International Symposium on Circuits and Systems (ISCAS), Austin, TX, USA, 28 May–1 June 2022; IEEE: New York, NY, USA, 2022; pp. 2333–2337. [Google Scholar]
- Liang, J.; Cao, J.; Sun, G.; Zhang, K.; Van Gool, L.; Timofte, R. Swinir: Image restoration using swin transformer. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Virtual, 11–17 October 2021; pp. 1833–1844. [Google Scholar]
- Xia, B.; Zhang, Y.; Wang, S.; Wang, Y.; Wu, X.; Tian, Y.; Yang, W.; Van Gool, L. Diffir: Efficient diffusion model for image restoration. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Paris, France, 2–6 October 2023; pp. 13095–13105. [Google Scholar]
- Yang, C.; Liang, L.; Su, Z. Real-World Denoising via Diffusion Model. arXiv 2023, arXiv:2305.04457. [Google Scholar]
- Guo, H.; Li, J.; Dai, T.; Ouyang, Z.; Ren, X.; Xia, S.T. MambaIR: A Simple Baseline for Image Restoration with State-Space Model. arXiv 2024, arXiv:2402.15648. [Google Scholar]
- Paul, A.; Kundu, A.; Chaki, N.; Dutta, D.; Jha, C. Wavelet enabled convolutional autoencoder based deep neural network for hyperspectral image denoising. In Multimedia Tools and Applications; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–27. [Google Scholar]
- Odena, A.; Dumoulin, V.; Olah, C. Deconvolution and checkerboard artifacts. Distill 2016, 1, e3. [Google Scholar] [CrossRef]
- Yu, F.; Koltun, V. Multi-scale context aggregation by dilated convolutions. arXiv 2015, arXiv:1511.07122. [Google Scholar]
- Yu, M.; Zhang, W.; Chen, X.; Liu, Y.; Niu, J. An End-to-End Atrous Spatial Pyramid Pooling and Skip-Connections Generative Adversarial Segmentation Network for Building Extraction from High-Resolution Aerial Images. Appl. Sci. 2022, 12, 5151. [Google Scholar] [CrossRef]
- Guo, M.H.; Xu, T.X.; Liu, J.J.; Liu, Z.N.; Jiang, P.T.; Mu, T.J.; Zhang, S.H.; Martin, R.R.; Cheng, M.M.; Hu, S.M. Attention mechanisms in computer vision: A survey. Comput. Vis. Media 2022, 8, 331–368. [Google Scholar] [CrossRef]
- Anwar, S.; Barnes, N.; Petersson, L. Attention-based real image restoration. IEEE Trans. Neural Netw. Learn. Syst. 2021, 1–13, early access. [Google Scholar] [CrossRef]
- Zamir, S.W.; Arora, A.; Khan, S.; Hayat, M.; Khan, F.S.; Yang, M.H.; Shao, L. Learning enriched features for fast image restoration and enhancement. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 1934–1948. [Google Scholar] [CrossRef]
- Park, J.; Woo, S.; Lee, J.Y.; Kweon, I.S. Bam: Bottleneck attention module. arXiv 2018, arXiv:1807.06514. [Google Scholar]
- Shafiq, M.; Gu, Z. Deep residual learning for image recognition: A survey. Appl. Sci. 2022, 12, 8972. [Google Scholar] [CrossRef]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the International Conference on Machine Learning (ICML), Lille, France, 7–9 July 2015; pp. 448–456. [Google Scholar]
- Charbonnier, P.; Blanc-Feraud, L.; Aubert, G.; Barlaud, M. Two deterministic half-quadratic regularization algorithms for computed imaging. In Proceedings of the IEEE International Conference on Image Processing, Austin, TX, USA, 13–16 November 1994; IEEE: New York, NY, USA, 1994; Volume 2, pp. 168–172. [Google Scholar]
- Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al. Photo-realistic single image super-resolution using a generative adversarial network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 June 2017; pp. 4681–4690. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Agustsson, E.; Timofte, R. Ntire 2017 challenge on single image super-resolution: Dataset and study. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 21–26 June 2017; pp. 126–135. [Google Scholar]
- Abdelhamed, A.; Lin, S.; Brown, M.S. A high-quality denoising dataset for smartphone cameras. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 1692–1700. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Martin, D.; Fowlkes, C.; Tal, D.; Malik, J. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Vancouver, BC, Canada, 7–14 July 2001; IEEE: New York, NY, USA, 2001; Volume 2, pp. 416–423. [Google Scholar]
- Franzen, R. Kodak Lossless True Color Image Suite. 1999. Volume 4, p. 9. Available online: http://r0k.us/graphics/kodak (accessed on 22 June 2022).
- Lebrun, M.; Colom, M.; Morel, J.M. The noise clinic: A blind image denoising algorithm. Image Process. Line 2015, 5, 1–54. [Google Scholar] [CrossRef]
Methods | DIV2K Validation Dataset [50] | CBSD68 Dataset [53] | Kodak24 Dataset [54] | ||||||
---|---|---|---|---|---|---|---|---|---|
DnCNN [11] | 39.86 | 38.35 | 35.63 | 33.90 | 31.24 | 27.95 | 34.60 | 32.14 | 28.95 |
DRUNet [12] | 40.79 | 39.63 | 37.89 | 34.30 | 31.69 | 28.51 | 35.31 | 32.89 | 29.86 |
IRCNN [16] | 39.81 | 38.28 | 35.65 | 33.86 | 31.16 | 27.86 | 34.69 | 32.18 | 28.93 |
FFDNet [17] | 40.18 | 38.79 | 36.45 | 33.87 | 31.21 | 27.96 | 34.63 | 32.13 | 28.98 |
RDUNet [28] | 40.69 | 39.48 | 37.57 | 34.24 | 31.60 | 28.37 | 35.13 | 32.69 | 29.58 |
SUNet [31] | 40.30 | 39.08 | 36.96 | 33.25 | 31.13 | 27.85 | 33.67 | 31.11 | 29.54 |
SwinIR [32] | 40.79 | 39.58 | 37.78 | 34.42 | 31.78 | 28.56 | 35.34 | 32.89 | 29.79 |
Ours | 40.90 | 39.76 | 38.07 | 34.47 | 32.05 | 28.63 | 35.32 | 33.08 | 29.87 |
Methods | DIV2K Validation Dataset [50] | CBSD68 Dataset [53] | Kodak24 Dataset [54] | ||||||
---|---|---|---|---|---|---|---|---|---|
DnCNN [11] | 0.9246 | 0.9095 | 0.8797 | 0.9290 | 0.8830 | 0.7896 | 0.8763 | 0.8823 | 0.7808 |
DRUNet [12] | 0.9345 | 0.9209 | 0.9037 | 0.9344 | 0.8926 | 0.8199 | 0.9287 | 0.8912 | 0.8199 |
IRCNN [16] | 0.9243 | 0.9086 | 0.8809 | 0.9285 | 0.8824 | 0.7898 | 0.9198 | 0.8766 | 0.7929 |
FFDNet [17] | 0.9272 | 0.9129 | 0.8901 | 0.9290 | 0.8821 | 0.7887 | 0.9215 | 0.8779 | 0.7942 |
RDUNet [28] | 0.9330 | 0.9193 | 0.9007 | 0.9340 | 0.8912 | 0.8062 | 0.9287 | 0.8903 | 0.8171 |
SUNet [31] | 0.9536 | 0.9225 | 0.9059 | 0.9372 | 0.8869 | 0.7995 | 0.9308 | 0.9014 | 0.8105 |
SwinIR [32] | 0.9351 | 0.9213 | 0.9033 | 0.9350 | 0.8940 | 0.8119 | 0.9300 | 0.8927 | 0.8216 |
Ours | 0.9357 | 0.9426 | 0.9277 | 0.9356 | 0.8942 | 0.8210 | 0.9304 | 0.9189 | 0.8232 |
Methods | DnCNN [11] | DRUNet [12] | IRCNN [16] | FFDNet [17] | RDUNet [28] | SUNet [31] | SwinIR [32] | Ours |
---|---|---|---|---|---|---|---|---|
Parameters | 558 K | 32.64 M | 420 K | 854 K | 166 M | 99 M | 12 M | 21 M |
Defined | Configuration | SSIM ↑ | PSNR ↑ |
---|---|---|---|
PCM → w/o PCM | 0.9105 | 36.77 | |
RBAM → SCL | 0.9062 | 37.16 | |
Ours | Default | 0.9277 | 38.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duong, M.-T.; Nguyen Thi, B.-T.; Lee, S.; Hong, M.-C. Multi-Branch Network for Color Image Denoising Using Dilated Convolution and Attention Mechanisms. Sensors 2024, 24, 3608. https://doi.org/10.3390/s24113608
Duong M-T, Nguyen Thi B-T, Lee S, Hong M-C. Multi-Branch Network for Color Image Denoising Using Dilated Convolution and Attention Mechanisms. Sensors. 2024; 24(11):3608. https://doi.org/10.3390/s24113608
Chicago/Turabian StyleDuong, Minh-Thien, Bao-Tran Nguyen Thi, Seongsoo Lee, and Min-Cheol Hong. 2024. "Multi-Branch Network for Color Image Denoising Using Dilated Convolution and Attention Mechanisms" Sensors 24, no. 11: 3608. https://doi.org/10.3390/s24113608
APA StyleDuong, M. -T., Nguyen Thi, B. -T., Lee, S., & Hong, M. -C. (2024). Multi-Branch Network for Color Image Denoising Using Dilated Convolution and Attention Mechanisms. Sensors, 24(11), 3608. https://doi.org/10.3390/s24113608