Non-Invasive Multi-Gas Detection Enabled by Cu-CuO/PEDOT Microneedle Sensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of CuMPES Electrodes
2.2. Preparation of Cu-CuO Electrode
2.3. Preparation of Cu-CuO/PEDOT Electrode
2.4. Synthesis of CuMPES
3. Characterization Results
Morphological Characterization
4. Electrochemical and Sensing Performance of the CuMPES
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lupan, O.; Postica, V.; Wolff, N.; Polonskyi, O.; Duppel, V.; Kaidas, V.; Lazari, E.; Ababii, N.; Faupel, F.; Kienle, L. Localized synthesis of iron oxide nanowires and fabrication of high performance nanosensors based on a single Fe2O3 nanowire. Small 2017, 13, 1602868. [Google Scholar] [CrossRef]
- Wang, X.-F.; Ma, W.; Jiang, F.; Cao, E.-S.; Sun, K.-M.; Cheng, L.; Song, X.-Z. Prussian Blue analogue derived porous NiFe2O4 nanocubes for low-concentration acetone sensing at low working temperature. Chem. Eng. J. 2018, 338, 504–512. [Google Scholar] [CrossRef]
- Makisimovich, N.; Vorotyntsev, V.; Nikitina, N.; Kaskevich, O.; Karabun, P.; Martynenko, F. Adsorption semiconductor sensor for diabetic ketoacidosis diagnosis. Sens. Actuators B Chem. 1996, 36, 419–421. [Google Scholar] [CrossRef]
- Park, S. Acetone gas detection using TiO2 nanoparticles functionalized In2O3 nanowires for diagnosis of diabetes. J. Alloys Compd. 2017, 696, 655–662. [Google Scholar] [CrossRef]
- Galassetti, P.R.; Novak, B.; Nemet, D.; Rose-Gottron, C.; Cooper, D.M.; Meinardi, S.; Newcomb, R.; Zaldivar, F.; Blake, D.R. Breath ethanol and acetone as indicators of serum glucose levels: An initial report. Diabetes Technol. Ther. 2005, 7, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Yamazoe, N. Toward innovations of gas sensor technology. Sens. Actuators B Chem. 2005, 108, 2–14. [Google Scholar] [CrossRef]
- Wu, C.; Yin, P.; Zhu, X.; OuYang, C.; Xie, Y. Synthesis of hematite (α-Fe2O3) nanorods: Diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors. J. Phys. Chem. B 2006, 110, 17806–17812. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Fu, W.; Meng, X.; Ruan, A.; Su, P.; Yang, H. Enhanced ethanol sensing properties based on spherical-coral-like SnO2 nanorods decorated with α-Fe2O3 nanocrystallites. Sens. Actuators B Chem. 2018, 261, 505–514. [Google Scholar] [CrossRef]
- Ahmed, Y.M.; Eldin, M.A.; Galal, A.; Atta, N.F. Electrochemical sensor based on PEDOT/CNTs-graphene oxide for simultaneous determination of hazardous hydroquinone, catechol, and nitrite in real water samples. Sci. Rep. 2024, 14, 5654. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Lv, Z.; Chen, Z.; Zhou, B.; Shao, Z. α-Fe2O3/TiO2/Ti3C2Tx Nanocomposites for Enhanced Acetone Gas Sensors. Sensors 2024, 24, 2604. [Google Scholar] [CrossRef]
- Ahmed, S.A.; Shen, Q.; Liao, Q.-B.; Zhou, J.; Hanif, S.; Muhammad, P.; Baig, M.M.F.A.; Xi, K.; Xia, X.-H.; Wang, K. Mass transfer modulation and gas mapping based on covalent organic frameworks-covered theta micropipette. Anal. Chem. 2020, 92, 7343–7348. [Google Scholar] [CrossRef] [PubMed]
- Khasim, S.; Pasha, A.; Badi, N.; Ltaief, A.; Al-Ghamdi, S.; Panneerselvam, C. Design and development of highly sensitive PEDOT-PSS/AuNP hybrid nanocomposite-based sensor towards room temperature detection of greenhouse methane gas at ppb level. RSC Adv. 2021, 11, 15017–15029. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, Z.; Li, Z.; Han, H.; Song, W.; Yi, J. A chemiresistive-potentiometric multivariate sensor for discriminative gas detection. Nat. Commun. 2023, 14, 3495. [Google Scholar] [CrossRef] [PubMed]
- Ren, B.-P.; Xu, Y.-P.; Huang, Y.-W.; She, C.; Sun, B. Methanol production from natural gas reforming and CO2 capturing process, simulation, design, and technical-economic analysis. Energy 2023, 263, 125879. [Google Scholar] [CrossRef]
- Jo, S.-J.; Kang, T.-H.; Shin, B.-J.; Mun, J.-H.; Devkota, S.; Cha, J.-Y.; Mazari, S.A.; Kim, K.-M.; Lee, U.; Shin, C.-H. Internal carbon loop strategy for methanol production from natural gas: Multi-objective optimization and process evaluation. J. Clean. Prod. 2023, 418, 138140. [Google Scholar] [CrossRef]
- Srivastava, R.K.; Sarangi, P.K.; Bhatia, L.; Singh, A.K.; Shadangi, K.P. Conversion of methane to methanol: Technologies and future challenges. Biomass Convers. Biorefinery 2022, 12, 1851–1875. [Google Scholar] [CrossRef]
- Yang, L.; Wang, Z.; Zhou, X.; Wu, X.; Han, N.; Chen, Y. Synthesis of Pd-loaded mesoporous SnO2 hollow spheres for highly sensitive and stable methane gas sensors. RSC Adv. 2018, 8, 24268–24275. [Google Scholar] [CrossRef] [PubMed]
- Lam, K.C.; Huang, B.; Shi, S.-Q. Room-temperature methane gas sensing properties based on in situ reduced graphene oxide incorporated with tin dioxide. J. Mater. Chem. A 2017, 5, 11131–11142. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Y.; Sun, G.; Zhang, B.; Wang, Y.; Cao, J.; Zhang, Z. Synthesis of NiO-decorated ZnO porous nanosheets with improved CH4 sensing performance. Appl. Surf. Sci. 2019, 497, 143811. [Google Scholar] [CrossRef]
- Ahmed, S.A.; Xing, X.-L.; Liao, Q.-B.; Li, Z.-Q.; Li, C.-Y.; Xi, K.; Wang, K.; Xia, X.-H. Study on ammonia content and distribution in the microenvironment based on covalent organic framework nanochannels. Anal. Chem. 2022, 94, 11224–11229. [Google Scholar] [CrossRef]
- Kamieniak, J.; Randviir, E.P.; Banks, C.E. The latest developments in the analytical sensing of methane. TrAC Trends Anal. Chem. 2015, 73, 146–157. [Google Scholar] [CrossRef]
- Yurchenko, O.; Diehle, P.; Altmann, F.; Schmitt, K.; Wöllenstein, J. Co3O4-Based Materials as Potential Catalysts for Methane Detection in Catalytic Gas Sensors. Sensors 2024, 24, 2599. [Google Scholar] [CrossRef] [PubMed]
- Yallew, H.D.; Vlk, M.; Datta, A.; Alberti, S.; Zakoldaev, R.A.; Høvik, J.; Aksnes, A.; Jágerská, J. Sub-ppm Methane Detection with Mid-Infrared Slot Waveguides. ACS Photonics 2023, 10, 4282–4289. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Tan, T.; Ji, W.; Zhou, W.; Bao, Y.; Xia, X.; Zeng, Z.; Gao, Y. Remarkably Enhanced Methane Sensing Performance at Room Temperature via Constructing a Self-Assembled Mulberry-Like ZnO/SnO2 Hierarchical Structure. Energy Environ. Mater. 2023, 7, e12624. [Google Scholar] [CrossRef]
- Dosi, M.; Lau, I.; Zhuang, Y.; Simakov, D.S.; Fowler, M.W.; Pope, M.A. Ultrasensitive electrochemical methane sensors based on solid polymer electrolyte-infused laser-induced graphene. ACS Appl. Mater. Interfaces 2019, 11, 6166–6173. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Liu, C.; Peng, Y.; Deng, J.; Hou, S.; Cheng, Y.; Huang, W.; Yu, J. Ultrasensitive flexible NO2 gas sensors via multilayer porous polymer film. Sens. Actuators B Chem. 2022, 368, 132113. [Google Scholar] [CrossRef]
- Xu, F.; Li, X.; Shi, Y.; Li, L.; Wang, W.; He, L.; Liu, R. Recent developments for flexible pressure sensors: A review. Micromachines 2018, 9, 580. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Chi, J.; Chen, H.; Liu, Z.; Shi, P.; Lu, Z.; Yin, L.; Du, L.; Lv, L.; Zhang, P. Ultrasensitive BiO-H2S gas sensor based on Cu2O-MWCNT heterostructures. ACS Sens. 2023, 8, 3952–3963. [Google Scholar] [CrossRef] [PubMed]
- Mangin, T.; Blanchard, E.K.; Kelly, K.E. Effect of Three-Dimensional-Printed Thermoplastics Used in Sensor Housings on Common Atmospheric Trace Gasses. Sensors 2024, 24, 2610. [Google Scholar] [CrossRef]
- Xue, D.; Wang, P.; Zhang, Z.; Wang, Y. Enhanced methane sensing property of flower-like SnO2 doped by Pt nanoparticles: A combined experimental and first-principle study. Sens. Actuators B Chem. 2019, 296, 126710. [Google Scholar] [CrossRef]
- Hong, T.; Culp, J.T.; Kim, K.-J.; Devkota, J.; Sun, C.; Ohodnicki, P.R. State-of-the-art of methane sensing materials: A review and perspectives. TrAC Trends Anal. Chem. 2020, 125, 115820. [Google Scholar] [CrossRef]
- Guo, Y.; Hong, X.; Wang, Y.; Li, Q.; Meng, J.; Dai, R.; Liu, X.; He, L.; Mai, L. Multicomponent hierarchical Cu-doped NiCo-LDH/CuO double arrays for ultralong-life hybrid fiber supercapacitor. Adv. Funct. Mater. 2019, 29, 1809004. [Google Scholar] [CrossRef]
- Regiart, M.; Kumar, A.; Gonçalves, J.M.; Silva Junior, G.J.; Masini, J.C.; Angnes, L.; Bertotti, M. An electrochemically synthesized nanoporous copper microsensor for highly sensitive and selective determination of glyphosate. ChemElectroChem 2020, 7, 1558–1566. [Google Scholar] [CrossRef]
- Yang, F.; Shi, J.; Zhang, X.; Hao, S.; Liu, Y.; Feng, C.; Cui, L. The microstructure and magnetic properties of Cu/CuO/Ni core/multi-shell nanowire arrays. Chem. Phys. Lett. 2018, 697, 43–47. [Google Scholar] [CrossRef]
- Mukherjee, N.; Show, B.; Maji, S.K.; Madhu, U.; Bhar, S.K.; Mitra, B.C.; Khan, G.G.; Mondal, A. CuO nano-whiskers: Electrodeposition, Raman analysis, photoluminescence study and photocatalytic activity. Mater. Lett. 2011, 65, 3248–3250. [Google Scholar] [CrossRef]
- Deng, Y.; Handoko, A.D.; Du, Y.; Xi, S.; Yeo, B.S. In situ Raman spectroscopy of copper and copper oxide surfaces during electrochemical oxygen evolution reaction: Identification of CuIII oxides as catalytically active species. ACS Catal. 2016, 6, 2473–2481. [Google Scholar] [CrossRef]
- Tahir, M.; Li, L.; He, L.; Xiang, Z.; Ma, Z.; Haider, W.A.; Liao, X.; Song, Y. Interdigital MnO2/PEDOT Alternating Stacked Microelectrodes for High-Performance On-Chip Microsupercapacitor and Humidity Sensing. Energy Environ. Mater. 2024, 7, e12546. [Google Scholar] [CrossRef]
- Tahir, M.; He, L.; Haider, W.A.; Yang, W.; Hong, X.; Guo, Y.; Pan, X.; Tang, H.; Li, Y.; Mai, L. Co-electrodeposited porous PEDOT-CNT microelectrodes for integrated micro-supercapacitors with high energy density, high rate capability, and long cycling life. Nanoscale 2019, 11, 7761–7770. [Google Scholar] [CrossRef]
- Abas, A.; Sheng, H.; Ma, Y.; Zhang, X.; Wei, Y.; Su, Q.; Lan, W.; Xie, E. PEDOT: PSS coated CuO nanowire arrays grown on Cu foam for high-performance supercapacitor electrodes. J. Mater. Sci. Mater. Electron. 2019, 30, 10953–10960. [Google Scholar] [CrossRef]
- Lin, Y.; Zou, J.; Wang, W.; Liu, X.; Gao, J.; Lu, Z. High-performance self-powered ultraviolet photodetector based on PEDOT: PSS/CuO/ZnO nanorod array sandwich structure. Appl. Surf. Sci. 2022, 599, 153956. [Google Scholar] [CrossRef]
- Abdah, M.A.A.M.; Azman, N.H.N.; Kulandaivalu, S.; Rahman, N.A.; Abdullah, A.H.; Sulaiman, Y. Potentiostatic deposition of poly (3, 4-ethylenedioxythiophene) and manganese oxide on porous functionalised carbon fibers as an advanced electrode for asymmetric supercapacitor. J. Power Sources 2019, 444, 227324. [Google Scholar] [CrossRef]
- Guo, Y.; Lei, H.; Xiong, L.; Li, B.; Chen, Z.; Wen, J.; Yang, G.; Li, G.; Fang, G. Single phase, high hole mobility Cu2O films as an efficient and robust hole transporting layer for organic solar cells. J. Mater. Chem. A 2017, 5, 11055–11062. [Google Scholar] [CrossRef]
- Song, J.; Li, W.; Song, K.; Qin, C.; Chen, X. The interwoven porous CoCHH@PEDOT nanowire network structure improves electrochemical performance of carbon cloth for flexible supercapacitors. Appl. Surf. Sci. 2021, 562, 150198. [Google Scholar] [CrossRef]
- Kondee, S.; Pon-On, W.; Siriwatcharapiboon, W.; Tuantranont, A.; Wongchoosuk, C. CuO/SnS2 Nanoparticles on PEDOT: PSS for Nonenzymatic Electrochemical Glucose Sensors. ACS Appl. Nano Mater. 2024, 7, 6722–6735. [Google Scholar] [CrossRef]
- Yin, Z.; Zeng, Y.; Yang, D.; Jiao, Y.; Song, J.; Hu, P.; Fan, H.; Teng, F. Multifunctional optoelectronic device based on CuO/ZnO heterojunction structure. J. Lumin. 2023, 257, 119762. [Google Scholar] [CrossRef]
- Kwak, C.-H.; Woo, H.-S.; Abdel-Hady, F.; Wazzan, A.A.; Lee, J.-H. Vapor-phase growth of urchin-like Mg-doped ZnO nanowire networks and their application to highly sensitive and selective detection of ethanol. Sens. Actuators B Chem. 2016, 223, 527–534. [Google Scholar] [CrossRef]
- Hwang, I.-S.; Kim, S.-J.; Choi, J.-K.; Jung, J.-J.; Yoo, D.J.; Dong, K.-Y.; Ju, B.-K.; Lee, J.-H. Large-scale fabrication of highly sensitive SnO2 nanowire network gas sensors by single step vapor phase growth. Sens. Actuators B Chem. 2012, 165, 97–103. [Google Scholar] [CrossRef]
- Zhao, Y.M.; Zhu, Y.Q. Room temperature ammonia sensing properties of W18O49 nanowires. Sens. Actuators B Chem. 2009, 137, 27–31. [Google Scholar] [CrossRef]
- Meier, D.C.; Semancik, S.; Button, B.; Strelcov, E.; Kolmakov, A. Coupling nanowire chemiresistors with MEMS microhotplate gas sensing platforms. Appl. Phys. Lett. 2007, 91, 063118. [Google Scholar] [CrossRef]
- Wang, J.; Liu, W.; Luo, G.; Li, Z.; Zhao, C.; Zhang, H.; Zhu, M.; Xu, Q.; Wang, X.; Zhao, C.; et al. Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction. Energy Environ. Sci. 2018, 11, 3375–3379. [Google Scholar] [CrossRef]
- Sunu, S.S.; Prabhu, E.; Jayaraman, V.; Gnanasekar, K.I.; Seshagiri, T.K.; Gnanasekaran, T. Electrical conductivity and gas sensing properties of MoO31Dedicated to Prof. Adolf Mikula. Sens. Actuators B Chem. 2004, 101, 161–174. [Google Scholar] [CrossRef]
- Mhlongo, G.H.; Shingange, K.; Tshabalala, Z.P.; Dhonge, B.P.; Mahmoud, F.A.; Mwakikunga, B.W.; Motaung, D.E. Room temperature ferromagnetism and gas sensing in ZnO nanostructures: Influence of intrinsic defects and Mn, Co, Cu doping. Appl. Surf. Sci. 2016, 390, 804–815. [Google Scholar] [CrossRef]
- Hao, P.; Qiu, G.; Song, P.; Yang, Z.; Wang, Q. Construction of porous LaFeO3 microspheres decorated with NiO nanosheets for high response ethanol gas sensors. Appl. Surf. Sci. 2020, 515, 146025. [Google Scholar] [CrossRef]
Sensor Type | Material | Target Gas | Method | Operating Temperature (°C) | Response Time (s) | Recovery Time (s) |
---|---|---|---|---|---|---|
Resistive [46] | ZnO: Mg (NW) | C2H5OH | Hydrothermal, CVD | 300 | 15 | 20 |
Resistive [47] | SnO2 (NW) | C2H5OH | VLS, CVD | 300 | 15 | 20 |
Resistive [48] | WO2 (NW) | NH3 | CVD | 25 | 40 | 50 |
Resistive [49] | SnO2 (SNW) | NH3 | VLS, Hydrothermal, CVD | 300 | 20 | 25 |
FET [50] | In2O3/PANI (NPs) | NH3 | Electrospinning, Chemical Precipitaion | 25 | 500 | 500 |
Chemiresistive [51] | MoO3 (NPs) | NH3 | Chemical Precipitation, Hydrothermal | 400 | 60 | 180 |
Capacitive [52] | Cu-doped ZnO | C2H5OH, NH3 | SGM, SSR | 25 | 13 | 33 |
Resistive [53] | NiO@LaFeO3 | C2H5O | CP, SSR | 240 | 2 | 9 |
Capacitive (This Work) | Cu-based | C2H5OH | - | 25 | 2.2 | 0.9 |
Capacitive (This Work) | Cu-CuO | C2H5OH | PO | 25 | 0.6 | 0.4 |
Capacitive (This Work) | Cu-CuO/PEDOT | C2H5OH, CH3OH, C3H6O, NH3, N2 | PO, VPP | 25 | 0.7 | 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, A.U.; Tahir, M.; Nisa, F.U.; Naseem, M.; Shahbaz, I.; Ma, Z.; Hu, Z.; Khan, A.J.; Sabir, M.; He, L. Non-Invasive Multi-Gas Detection Enabled by Cu-CuO/PEDOT Microneedle Sensor. Sensors 2024, 24, 3623. https://doi.org/10.3390/s24113623
Khan AU, Tahir M, Nisa FU, Naseem M, Shahbaz I, Ma Z, Hu Z, Khan AJ, Sabir M, He L. Non-Invasive Multi-Gas Detection Enabled by Cu-CuO/PEDOT Microneedle Sensor. Sensors. 2024; 24(11):3623. https://doi.org/10.3390/s24113623
Chicago/Turabian StyleKhan, Arif Ullah, Muhammad Tahir, Fazal Ul Nisa, Mizna Naseem, Iqra Shahbaz, Zeyu Ma, Zilu Hu, Abdul Jabbar Khan, Muhammad Sabir, and Liang He. 2024. "Non-Invasive Multi-Gas Detection Enabled by Cu-CuO/PEDOT Microneedle Sensor" Sensors 24, no. 11: 3623. https://doi.org/10.3390/s24113623
APA StyleKhan, A. U., Tahir, M., Nisa, F. U., Naseem, M., Shahbaz, I., Ma, Z., Hu, Z., Khan, A. J., Sabir, M., & He, L. (2024). Non-Invasive Multi-Gas Detection Enabled by Cu-CuO/PEDOT Microneedle Sensor. Sensors, 24(11), 3623. https://doi.org/10.3390/s24113623