Longitudinal Mode Number Estimation of External Cavity Diode Laser Using Dual Periodic Grating for Optical Profiler System
Abstract
:1. Introduction
2. Concept of Optical Profiler Based on External Cavity Diode Laser
3. Principle of Longitudinal Mode Number Estimation of External Cavity Diode Laser Using Dual Periodic Grating
3.1. Fundamental Theory of Longitudinal Mode Number Estimation
3.2. Uncertainty of Longitudinal Mode Number Estimation
3.3. Longitudinal Mode Number Estimation Using Dual Periodic Grating
4. Experimental Setup
4.1. Optical System
4.2. Dual Periodic Grating
5. Experimental Validation of Longitudinal Mode Number Estimation
5.1. Characteristic of Optical Resonance in Two Frequency Bands
5.2. Longitudinal Mode Number Estimation
5.3. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qi, Q.; Tao, F.; Zuo, Y.; Zhao, D. Digital twin service towards smart manufacturing. Procedia CIRP 2018, 72, 237–242. [Google Scholar] [CrossRef]
- Okita, T.; Kawabata, T.; Murayama, H.; Nishino, N.; Aichi, M. Digital twin of artifact systems: Models assimilated with monitoring data from material microstructures to social systems. Int. J. Autom. Technol. 2020, 14, 700–712. [Google Scholar] [CrossRef]
- Michihata, M. Surface-sensing principle of microprobe system for micro-scale coordinate metrology: A review. Metrology 2022, 2, 46–72. [Google Scholar] [CrossRef]
- Hansen, H.N.; Carneiro, K.; Haitjema, H.; De Chiffre, L. Dimensional micro and nano metrology. CIRP Ann. 2006, 55, 721–743. [Google Scholar] [CrossRef]
- Michihata, M.; Nagasaka, Y.; Takaya, Y.; Hayashi, T. Probing technique using circular motion of a microsphere controlled by optical pressure for a nano-coordinate measuring machine. Appl. Opt. 2009, 48, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Haitjema, H.; Fang, F.Z.; Leach, R.K.; Cheung, C.F.; Savio, E.; Linares, J.M. On-machine and in-process surface metrology for precision manufacturing. CIRP Ann. 2019, 68, 843–866. [Google Scholar] [CrossRef]
- Takaya, Y. In-process and on-machine measurement of machining accuracy for process and product quality management: A review. Int. J. Autom. Technol. 2014, 8, 4–19. [Google Scholar] [CrossRef]
- Li, D.; Wang, B.; Tong, Z.; Blunt, L.; Jiang, X. On-machine surface measurement and applications for ultra-precision machining: A state-of-the-art review. Int. J. Adv. Manuf. Technol. 2019, 104, 831–847. [Google Scholar] [CrossRef]
- Schwenke, H.; Neuschaefer-Rube, U.; Pfeifer, T.; Kunzmann, H. Optical methods for dimensional metrology in production engineering. CIRP Ann. 2002, 51, 685–699. [Google Scholar] [CrossRef]
- Costa, M.F. Optical triangulation-based microtopographic inspection of surfaces. Sensors 2012, 12, 4399–4420. [Google Scholar] [CrossRef]
- Guidi, G.; Russo, M.; Magrassi, G.; Bordegoni, M. Performance evaluation of triangulation based range sensors. Sensors 2010, 10, 7192–7215. [Google Scholar] [CrossRef] [PubMed]
- Wertjanz, D.; Kern, T.; Csencsics, E.; Stadler, G.; Schitter, G. Compact scanning confocal chromatic sensor enabling precision 3-D measurements. Appl. Opt. 2021, 60, 7511–7517. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Mei, S.; Fan, L.; Wang, H. A line-scanning chromatic confocal sensor for three-dimensional profile measurement on highly reflective materials. Rev. Sci. Instrum. 2021, 92, 053707. [Google Scholar] [CrossRef]
- Sato, R.; Shimizu, Y.; Matsukuma, H.; Gao, W. Influence of surface tilt angle on a chromatic confocal probe with a femtosecond laser. Appl. Sci. 2022, 12, 4736. [Google Scholar] [CrossRef]
- Creath, K. Step height measurement using two-wavelength phase-shifting interferometry. Appl. Opt. 1987, 26, 2810–2816. [Google Scholar] [CrossRef] [PubMed]
- Michihata, M.; Hayashi, T.; Nakai, D.; Takaya, Y. Micro-displacement sensor using an optically trapped micro-sphere based on the interference scale. Rev. Sci. Instrum. 2010, 81, 015107. [Google Scholar] [CrossRef] [PubMed]
- Vivo, A.; Barrett, R.; Perrin, F. Stitching techniques for measuring X-ray synchrotron mirror topography. Rev. Sci. Instrum. 2019, 90, 021710. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, O.; Okazaki, H. Sinusoidal phase modulating interferometry for surface profile measurement. Appl. Opt. 1986, 25, 3137–3140. [Google Scholar] [CrossRef] [PubMed]
- Bobroff, N. Recent advances in displacement measuring interferometry. Meas. Sci. Technol. 1993, 4, 907. [Google Scholar] [CrossRef]
- Kato, T.; Uchida, M.; Minoshima, K. No-scanning 3D measurement method using ultrafast dimensional conversion with a chirped optical frequency comb. Sci. Rep. 2015, 7, 3670. [Google Scholar] [CrossRef]
- Emery, Y.; Colomb, T.; Cuche, E. Metrology applications using off-axis digital holography microscopy. J. Phys. Photonics 2021, 3, 034016. [Google Scholar] [CrossRef]
- Haitjema, H. The calibration of displacement sensors. Sensors 2020, 20, 584. [Google Scholar] [CrossRef] [PubMed]
- Michihata, M.; Hayashi, T.; Adachi, A.; Takaya, Y. Measurement of stylus-probe sphere diameter for micro-CMM based on spectral fingerprint of whispering gallery mode. CIRP Ann. 2014, 63, 469–472. [Google Scholar] [CrossRef]
- Masui, S.; Goda, S.; Kadoya, S.; Michihata, M.; Takahashi, S. Grating periods measurement of multi-pitched grating using Littrow configuration external cavity diode laser. Appl. Phys. Express 2021, 14, 076501. [Google Scholar] [CrossRef]
- Lawall, J.R. Fabry–Perot metrology for displacements up to 50 mm. J. Opt. Soc. Am. A 2005, 22, 2786–2798. [Google Scholar] [CrossRef] [PubMed]
- Mroziewicz, B. External cavity wavelength tunable semiconductor lasers—A review. Opto-Electron. Rev. 2008, 16, 347–366. [Google Scholar] [CrossRef]
- Liu, K.; Littman, M.G. Novel geometry for single-mode scanning of tunable lasers. Opt. Lett. 1981, 6, 117–118. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Michihata, M.; Zhao, Z.; Chu, B.; Takamasu, K.; Takahashi, S. Radial mode number identification on whispering gallery mode resonances for diameter measurement of microsphere. Meas. Sci. Technol. 2019, 30, 065201. [Google Scholar] [CrossRef]
- Lepage, J.F.; McCathy, N. Analysis of the diffractional properties of dual-period apodizing gratings. Appl. Opt. 2004, 43, 3504–3512. [Google Scholar] [CrossRef]
- Zambon, V.; Piche, M.; McCarthy, N. Tunable dual-wavelength operation of an external cavity semiconductor laser. Optics Commun. 2006, 264, 180–186. [Google Scholar] [CrossRef]
- Skigin, D.C.; Depine, R.A. Diffraction by dual-period gratings. Appl. Opt. 2007, 46, 1385–1391. [Google Scholar] [CrossRef] [PubMed]
- Masui, S.; Torii, Y.; Michihata, M.; Takamasu, M.; Takahashi, S. Fabrication of nano/micro dual-periodic structures by multi-beam evanescent wave interference lithography using spatial beats. Opt. Express 2019, 27, 31522–31531. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, S.; Masui, S.; Michihata, M.; Takamasu, K. Advanced generation of functional dual-periodic microstructured surface based on optical in-process measurement. CIRP Ann. 2020, 69, 477–480. [Google Scholar] [CrossRef]
- Pettit, G.D.; Turner, W.J. Refractive Index of InP. J. Appl. Phys. 1965, 36, 2081. [Google Scholar] [CrossRef]
- Ciddor, P.E. Refractive index of air: New equations for the visible and near infrared. Appl. Opt. 1996, 35, 1566–1573. [Google Scholar] [CrossRef]
- Goda, S.; Kadoya, S.; Michihata, M.; Takahashi, S. High-precision length measurement using diode laser and external resonator mechanism (5th report) ~Proposal for a resonator length measurement method using a double resonator. In Proceedings of the 2023 JSPE Autumn Conference, Fukuoka, Japan, 13–15 September 2023; p. 519. (In Japanese). [Google Scholar] [CrossRef]
Mode | ||
---|---|---|
m+k | m | |
Resonant wavelength, μm | 1.571 133 2 | 1.612 373 6 |
Resonant frequency, THz | 190.812 878 7 | 185.932 383 0 |
FSR (averaged), GHz | 6.8215 | |
Mode number difference, k | 716 | |
Estimated mode number | 28,178 | 27,462 |
Estimated cavity length, L, mm | 18.966 89 | 18.974 81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michihata, M.; Goda, S.; Masui, S.; Takahashi, S. Longitudinal Mode Number Estimation of External Cavity Diode Laser Using Dual Periodic Grating for Optical Profiler System. Sensors 2024, 24, 3821. https://doi.org/10.3390/s24123821
Michihata M, Goda S, Masui S, Takahashi S. Longitudinal Mode Number Estimation of External Cavity Diode Laser Using Dual Periodic Grating for Optical Profiler System. Sensors. 2024; 24(12):3821. https://doi.org/10.3390/s24123821
Chicago/Turabian StyleMichihata, Masaki, Shuhei Goda, Shuzo Masui, and Satoru Takahashi. 2024. "Longitudinal Mode Number Estimation of External Cavity Diode Laser Using Dual Periodic Grating for Optical Profiler System" Sensors 24, no. 12: 3821. https://doi.org/10.3390/s24123821
APA StyleMichihata, M., Goda, S., Masui, S., & Takahashi, S. (2024). Longitudinal Mode Number Estimation of External Cavity Diode Laser Using Dual Periodic Grating for Optical Profiler System. Sensors, 24(12), 3821. https://doi.org/10.3390/s24123821