Quadruped Robot Control: An Approach Using Body Planar Motion Control, Legs Impedance Control and Bézier Curves
Abstract
:1. Introduction
- A planar kinematic model of the robot body inspired by differential robots;
- Step trajectory planner using a single Bézier curve for the swing and support phases of feet without decomposition of the walking cycle;
- Algorithm for calculating step frequency and length based on the step speed of the robot’s legs.
- The validation of the proposed control conducted through simulations and experiments with a physical robot.
2. Materials and Methods
2.1. Dynamic Model and Control of the Legs
2.2. Bézier Curves
Curve Fitting
2.3. Bézier Curves for Steps
2.4. Step and Gait Pattern Using Bézier Curves
Algorithm 1: Function for calculating frequency and step length. |
2.5. Planar Kinematic Model of the Body
2.6. Planar Body Control
2.7. General Description of Control Strategy
3. Results
3.1. Simulations
3.1.1. Leg Control following Bézier Curves
3.1.2. Body Control following Lemniscate Curve
3.2. Physical Robot Go1
3.2.1. Leg Control following Bézier Curves in Hardware
3.2.2. Planar Body Control
4. Discussion
4.1. Simulation Discussion
4.2. Physical Robot Experiments Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fankhauser, P.; Hutter, M. ANYmal: A Unique Quadruped Robot Conquering Harsh Environments. Res. Features 2018, 126, 54–57. [Google Scholar]
- Kolvenbach, H.; Wisth, D.; Buchanan, R.; Valsecchi, G.; Grandia, R.; Fallon, M.; Hutter, M. Towards autonomous inspection of concrete deterioration in sewers with legged robots. J. Field Robot. 2020, 37, 1314–1327. [Google Scholar] [CrossRef]
- Wang, Y.; Ramezani, M.; Fallon, M. Actively Mapping Industrial Structures with Information Gain-Based Planning on a Quadruped Robot. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020. [Google Scholar]
- Buchli, J.; Kalakrishnan, M.; Mistry, M.; Pastor, P.; Schaal, S. Compliant quadruped locomotion over rough terrain. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 10–15 October 2009. [Google Scholar]
- Amatucci, L.; Turrisi, G.; Bratta, A.; Barasuol, V.; Semini, C. VERO: A vacuum-cleaner-equipped quadruped robot for efficient litter removal. J. Field Robot. 2024. [Google Scholar] [CrossRef]
- Kolvenbach, H.; Arm, P.; Valsecchi, G.; Rudin, N.; Hutter, M. Towards Legged Robots for Planetary Exploration. In Proceedings of the ICRA Workshop on Legged Robots, Philadelphia, PA, USA, 27 May 2022. [Google Scholar]
- Boaventura, T.; Semini, C.; Buchli, J.; Frigerio, M.; Focchi, M.; Caldwell, D.G. Dynamic torque control of a hydraulic quadruped robot. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012. [Google Scholar]
- Pandala, A.; Kamidi, V.R.; Hamed, K.A. Decentralized Control Schemes for Stable Quadrupedal Locomotion: A Decomposition Approach from Centralized Controllers. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October 2020–24 January 2021. [Google Scholar]
- Liu, M.; Qu, D.; Xu, F.; Zou, F.; Di, P.; Tang, C. Quadrupedal Robots Whole-Body Motion Control Based on Centroidal Momentum Dynamics. Appl. Sci. 2019, 9, 1335. [Google Scholar] [CrossRef]
- Semini, C.; Barasuol, V.; Boaventura, T.; Frigerio, M.; Focchi, M.; Caldwell, D.G.; Buchli, J. Towards versatile legged robots through active impedance control. Int. J. Robot. Res. 2015, 34, 1003–1020. [Google Scholar] [CrossRef]
- Park, J.; Park, J.H. Impedance control of quadruped robot and its impedance characteristic modulation for trotting on irregular terrain. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, 7–12 October 2012. [Google Scholar]
- Angelini, F.; Xin, G.; Wolfslag, W.J.; Tiseo, C.; Mistry, M.; Garabini, M.; Bicchi, A.; Vijayakumar, S. Online Optimal Impedance Planning for Legged Robots. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 6028–6035. [Google Scholar]
- Zhang, C.; Shen, K.; Wei, Q.; Ma, H. Research on Impedance Control Method of Legged Robot with Gait and Load Adaptive Capability. In Proceedings of the 2020 Chinese Automation Congress (CAC), Shanghai, China, 6–8 November 2020. [Google Scholar]
- Gehring, C.; Coros, S.; Hutter, M.; Bloesch, M.; Hoepflinger, M.A.; Siegwart, R. Control of dynamic gaits for a quadrupedal robot. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013. [Google Scholar]
- Raibert, M.H. Legged Robots That Balance; MIT Press: Cambridge, MA, USA, 1986. [Google Scholar]
- Kim, D.; Di Carlo, J.; Katz, B.; Bledt, G.; Kim, S. Highly Dynamic Quadruped Locomotion via Whole-Body Impulse Control and Model Predictive Control. arXiv 2019, arXiv:1909.06586. [Google Scholar]
- Grandia, R.; Jenelten, F.; Yang, S.; Farshidian, F.; Hutter, M. Perceptive Locomotion Through Nonlinear Model-Predictive Control. IEEE Trans. Robot. 2023, 39, 3402–3421. [Google Scholar] [CrossRef]
- Hou, W.; Ma, L.; Wang, J.; Zhao, J. Walking Decision of Hydraulic Quadruped Robot in Complex Environment. In Proceedings of the 2020 Chinese Control and Decision Conference (CCDC), Hefei, China, 22–24 August 2020. [Google Scholar]
- Jin, B.; Sun, C.; Zhang, A.; Ding, N.; Lin, J.; Deng, G.; Zhu, Z.; Sun, Z. Joint Torque Estimation toward Dynamic and Compliant Control for Gear-Driven Torque Sensorless Quadruped Robot. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019. [Google Scholar]
- Hyun, D.J.; Seok, S.; Lee, J.; Kim, S. High speed trot-running: Implementation of a hierarchical controller using proprioceptive impedance control on the MIT Cheetah. Int. J. Robot. Res. 2014, 33, 1417–1445. [Google Scholar] [CrossRef]
- Gangapurwala, S.; Geisert, M.; Orsolino, R.; Fallon, M.; Havoutis, I. RLOC: Terrain-Aware Legged Locomotion Using Reinforcement Learning and Optimal Control. IEEE Trans. Robot. 2022, 38, 2908–2927. [Google Scholar] [CrossRef]
- Jenelten, F.; Grandia, R.; Farshidian, F.; Hutter, M. TAMOLS: Terrain-Aware Motion Optimization for Legged Systems. IEEE Trans. Robot. 2022, 38, 3395–3413. [Google Scholar] [CrossRef]
- Bjelonic, M.; Grandia, R.; Geilinger, M.; Harley, O.; Medeiros, V.S.; Pajovic, V.; Jelavic, E.; Coros, S.; Hutter, M. Offline motion libraries and online MPC for advanced mobility skills. Int. J. Robot. Res. 2022, 41, 903–924. [Google Scholar] [CrossRef]
- Leziart, P.A.; Flayols, T.; Grimminger, F.; Mansard, N.; Soueres, P. Implementation of a Reactive Walking Controller for the New Open-Hardware Quadruped Solo-12. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021. [Google Scholar]
- Kober, J.; Bagnell, J.A.; Peters, J. Reinforcement learning in robotics: A survey. Int. J. Robot. Res. 2013, 32, 1238–1274. [Google Scholar] [CrossRef]
- Belter, D.; Bednarek, J.; Lin, H.C.; Xin, G.; Mistry, M. Single-shot Foothold Selection and Constraint Evaluation for Quadruped Locomotion. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019. [Google Scholar]
- Lee, J.; Hwangbo, J.; Wellhausen, L.; Koltun, V.; Hutter, M. Learning quadrupedal locomotion over challenging terrain. Sci. Robot. 2020, 5, eabc5986. [Google Scholar] [CrossRef] [PubMed]
- Miki, T.; Lee, J.; Hwangbo, J.; Wellhausen, L.; Koltun, V.; Hutter, M. Learning robust perceptive locomotion for quadrupedal robots in the wild. Sci. Robot. 2022, 7, eabc5986. [Google Scholar] [CrossRef] [PubMed]
- Feng, G.; Zhang, H.; Li, Z.; Peng, X.B.; Basireddy, B.; Yue, L.; Song, Z.; Yang, L.; Liu, Y.; Sreenath, K.; et al. GenLoco: Generalized Locomotion Controllers for Quadrupedal Robots. In Proceedings of the 6th Conference on Robot Learning (CoRL), Auckland, New Zealand, 14 December 2022. [Google Scholar]
- Ma, Y.J.; Liang, W.; Wang, H.; Wang, S.; Zhu, Y.; Fan, L.; Bastani, O.; Jayaraman, D. DrEureka: Language Model Guided Sim-To-Real Transfer. In Proceedings of the Robotics: Science and Systems (RSS), Delft, The Netherlands, 15–19 July 2024. [Google Scholar]
- Peters, J.; Lee, D.D.; Kober, J.; Nguyen-Tuong, D.; Bagnell, D.; Schaal, S. Springer Handbook of Robotics, 2nd ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; Chapter Robot Learning; pp. 357–394. [Google Scholar]
- Pedro, G.D.G.; Freitas, G.M. Controle complacente de passo para um robô quadrupede utilizando curvas de Bézier. SBA Soc. Bras. Autom. 2021, 1, SBAI2021. [Google Scholar]
- Pedro, G.D.G.; Freitas, G.M. Controle dinâmico de marcha e passo para um robô quadrupede utilizando curvas de Bézier. SBA Soc. Bras. Autom. 2022, 3, CBA2022. [Google Scholar]
- Pedro, G.D.G.; Cunha, T.B.; Júnior, P.A.A.M.; Freitas, G.M. Planar Motion Control of a Quadruped Robot. In Synergetic Cooperation between Robots and Humans—Proceedings of the CLAWAR 2023 Conference—Volume 2; Springer: Cham, Switzerland, 2024; pp. 171–184. [Google Scholar]
- Galdeano, D.; Chemori, A.; Krut, S.; Fraisse, P. A New Hybrid Kinematic/Dynamic Whole-Body Control for Humanoid Robots with Real-Time Experiments. Int. J. Humanoid Robot. 2021, 18, 2150016. [Google Scholar] [CrossRef]
- Focchi, M.; Roscia, F.; Semini, C. Locosim: An Open-Source Cross-Platform Robotics Framework. In Synergetic Cooperation between Robots and Humans; Youssef, E.S.E., Tokhi, M.O., Silva, M.F., Rincon, L.M., Eds.; Springer: Cham, Switzerland, 2024; pp. 395–406. [Google Scholar]
- Carpentier, J.; Saurel, G.; Buondonno, G.; Mirabel, J.; Lamiraux, F.; Stasse, O.; Mansard, N. The Pinocchio C++ Library: A Fast and Flexible Implementation of Rigid Body Dynamics Algorithms and Their Analytical Derivatives. In Proceedings of the 2019 IEEE/SICE International Symposium on System Integration (SII), Paris, France, 14–16 January 2019; pp. 614–619. [Google Scholar]
- Spong, M.W.; Hutchinson, S.; Vidyasagar, M. Robot Modeling and Control; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Farin, G. Curves and Surfaces for Computer-Aided Geometric Design: A Practical Guide; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Zhang, S.; Hou, Q.; Zhang, X.; Wu, X.; Wang, H. A Novel Vectorized Curved Road Representation Based Aerial Guided Unmanned Vehicle Trajectory Planning. Sensors 2023, 23, 7305. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Gangavarapu, P.T.; Kompe, N.F.; Schildbach, G.; Ernst, F. Navigation with Polytopes: A Toolbox for Optimal Path Planning with Polytope Maps and B-spline Curves. Sensors 2023, 23, 3532. [Google Scholar] [CrossRef]
- Benko Loknar, M.; Klančar, G.; Blažič, S. Minimum-Time Trajectory Generation for Wheeled Mobile Systems Using Bézier Curves with Constraints on Velocity, Acceleration and Jerk. Sensors 2023, 23, 1982. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, P.; Li, D.; Sun, T. Curvature Continuous and Bounded Path Planning for Fixed-Wing UAVs. Sensors 2017, 17, 2155. [Google Scholar] [CrossRef] [PubMed]
- Jiao, J.; Cao, Z.; Zhao, P.; Liu, X.; Tan, M. Bezier curve based path planning for a mobile manipulator in unknown environments. In Proceedings of the 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO), Shenzhen, China, 12–14 December 2013. [Google Scholar]
- Kuo, Y.L.; Lin, C.C.; Lin, Z.T. Dual-optimization trajectory planning based on parametric curves for a robot manipulator. Int. J. Adv. Robot. Syst. 2020, 17, 172988142092004. [Google Scholar] [CrossRef]
- Chen, L.; Ma, Y.; Zhang, Y.; Liu, J. Obstacle Avoidance and Multitarget Tracking of a Super Redundant Modular Manipulator Based on Bezier Curve and Particle Swarm Optimization. Chin. J. Mech. Eng. 2020, 33, 71. [Google Scholar] [CrossRef]
- Alexander, R.M. The Gaits of Bipedal and Quadrupedal Animals. Int. J. Robot. Res. 1984, 3, 49–59. [Google Scholar] [CrossRef]
- Ma, S.; Tomiyama, T.; Wada, H. Omnidirectional static walking of a quadruped robot. IEEE Trans. Robot. 2005, 21, 152–161. [Google Scholar] [CrossRef]
- Zhang, L.; Ma, S.; Inoue, K. Several Insights into Omnidirectional Static Walking of a Quadruped Robot on a slope. In Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 9–15 October 2006. [Google Scholar]
- Aeini, A.; Pourassad, M.; Haghjoo, M.R.; Taghizadeh, M. Trotting Gait Planning and Modeling of a Quadruped Robot. In Proceedings of the 2022 8th International Conference on Control, Instrumentation and Automation (ICCIA), Tehran, Iran, 2–3 March 2022. [Google Scholar]
- Hildebrand, M. Chapter 3. Walking and Running. In Functional Vertebrate Morphology; Harvard University Press: Cambridge, MA, USA, 1985; pp. 38–57. [Google Scholar]
- Luca, A.D.; Oriolo, G. Local incremental planning for nonholonomic mobile robots. In Proceedings of the 1994 IEEE International Conference on Robotics and Automation, San Diego, CA, USA, 8–13 May 1994. [Google Scholar]
- Buchli, J.; Boaventura, T.; Mombaur, K.; Vallery, H.; Hu, Y.; Bhounsule, P.; Wensing, P.M.; Revzen, S.; Ames, A.D.; Poulakakis, I.; et al. Chapter 4—Control of Motion and Compliance. In Bioinspired Legged Locomotion; Sharbafi, M.A., Seyfarth, A., Eds.; Butterworth-Heinemann: Oxford, UK, 2017; pp. 135–346. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pedro, G.D.G.; Bermudez, G.; Medeiros, V.S.; Cruz Neto, H.J.d.; Barros, L.G.D.d.; Pessin, G.; Becker, M.; Freitas, G.M.; Boaventura, T. Quadruped Robot Control: An Approach Using Body Planar Motion Control, Legs Impedance Control and Bézier Curves. Sensors 2024, 24, 3825. https://doi.org/10.3390/s24123825
Pedro GDG, Bermudez G, Medeiros VS, Cruz Neto HJd, Barros LGDd, Pessin G, Becker M, Freitas GM, Boaventura T. Quadruped Robot Control: An Approach Using Body Planar Motion Control, Legs Impedance Control and Bézier Curves. Sensors. 2024; 24(12):3825. https://doi.org/10.3390/s24123825
Chicago/Turabian StylePedro, Gabriel Duarte Gonçalves, Gabriel Bermudez, Vivian Suzano Medeiros, Hélio Jacinto da Cruz Neto, Luiz Guilherme Dias de Barros, Gustavo Pessin, Marcelo Becker, Gustavo Medeiros Freitas, and Thiago Boaventura. 2024. "Quadruped Robot Control: An Approach Using Body Planar Motion Control, Legs Impedance Control and Bézier Curves" Sensors 24, no. 12: 3825. https://doi.org/10.3390/s24123825
APA StylePedro, G. D. G., Bermudez, G., Medeiros, V. S., Cruz Neto, H. J. d., Barros, L. G. D. d., Pessin, G., Becker, M., Freitas, G. M., & Boaventura, T. (2024). Quadruped Robot Control: An Approach Using Body Planar Motion Control, Legs Impedance Control and Bézier Curves. Sensors, 24(12), 3825. https://doi.org/10.3390/s24123825