Exploring the Feasibility of Estimating Intraocular Pressure Using Vibrational Response of the Eye: A Methodological Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation for Vibration Testing
2.2. Setting Up Vibration Experiment Equipment
2.3. Experimental Method
2.4. Transfer Function for Spectral Analysis of Linear Systems
2.4.1. Frequency Response Analysis
2.4.2. Input–Output Relationship
2.4.3. Proportional Output in Linear System
2.5. Methodology for Univariate Regression Analysis
2.5.1. Overview of Univariate Regression Analysis
2.5.2. Application of GLM for Univariate Analysis
2.6. Application of Pearson Correlation in Univariate Analysis
2.6.1. Overview of Pearson Correlation
2.6.2. Pearson Correlation Coefficient
2.6.3. Significance of Pearson Correlation
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Sommer, A.; Tielsch, J.M.; Katz, J.; Quigley, H.A.; Gottsch, J.D.; Javitt, J.; Singh, K. Relationship between intraocular pressure and primary open angle glaucoma among white and black Americans: The Baltimore Eye Survey. Arch. Ophthalmol. 1991, 109, 1090–1095. [Google Scholar] [CrossRef] [PubMed]
- Vogel, R.; Crick, R.; Newson, R.; Shipley, M.; Blackmore, H.; Bulpitt, C. Association between intraocular pressure and loss of visual field in chronic simple glaucoma. Br. J. Ophthalmol. 1990, 74, 3–6. [Google Scholar] [CrossRef]
- Prum, B.E.; Rosenberg, L.F.; Gedde, S.J.; Mansberger, S.L.; Stein, J.D.; Moroi, S.E.; Herndon, L.W.; Lim, M.C.; Williams, R.D. Primary open-angle glaucoma preferred practice pattern® guidelines. Ophthalmology 2016, 123, P41–P111. [Google Scholar] [CrossRef] [PubMed]
- Moses, R.A. The Goldmann applanation tonometer. Am. J. Ophthalmol. 1958, 46, 865–869. [Google Scholar] [CrossRef]
- Bhan, A.; Browning, A.C.; Shah, S.; Hamilton, R.; Dave, D.; Dua, H.S. Effect of corneal thickness on intraocular pressure measurements with the pneumotonometer, Goldmann applanation tonometer, and Tono-Pen. Investig. Ophthalmol. Vis. Sci. 2002, 43, 1389–1392. [Google Scholar]
- Cook, J.A.; Botello, A.P.; Elders, A.; Ali, A.F.; Azuara-Blanco, A.; Fraser, C.; McCormack, K.; Burr, J.M. Systematic review of the agreement of tonometers with Goldmann applanation tonometry. Ophthalmology 2012, 119, 1552–1557. [Google Scholar] [CrossRef]
- Davies, L.N.; Bartlett, H.; Mallen, E.A.; Wolffsohn, J.S. Clinical evaluation of rebound tonometer. Acta Ophthalmol. Scand. 2006, 84, 206–209. [Google Scholar] [CrossRef] [PubMed]
- Martinez-de-la-Casa, J.M.; Garcia-Feijoo, J.; Castillo, A.; Garcia-Sanchez, J. Reproducibility and clinical evaluation of rebound tonometry. Investig. Ophthalmol. Vis. Sci. 2005, 46, 4578–4580. [Google Scholar] [CrossRef]
- Boothe, W.A.; Lee, D.A.; Panek, W.C.; Pettit, T.H. The Tono-Pen: A manometric and clinical study. Arch. Ophthalmol. 1988, 106, 1214–1217. [Google Scholar] [CrossRef]
- Hessemer, V.; Rössler, R.; Jacobi, K. Tono-Pen, a new tonometer. Int. Ophthalmol. 1989, 13, 51–56. [Google Scholar] [CrossRef]
- ElMallah, M.K.; Asrani, S.G. New ways to measure intraocular pressure. Curr. Opin. Ophthalmol. 2008, 19, 122–126. [Google Scholar] [CrossRef]
- Okafor, K.C.; Brandt, J.D. Measuring intraocular pressure. Curr. Opin. Ophthalmol. 2015, 26, 103–109. [Google Scholar] [CrossRef]
- Congdon, N.G.; Broman, A.T.; Bandeen-Roche, K.; Grover, D.; Quigley, H.A. Central corneal thickness and corneal hysteresis associated with glaucoma damage. Am. J. Ophthalmol. 2006, 141, 868–875. [Google Scholar] [CrossRef] [PubMed]
- Herndon, L.W.; Choudhri, S.A.; Cox, T.; Damji, K.F.; Shields, M.B.; Allingham, R.R. Central corneal thickness in normal, glaucomatous, and ocular hypertensive eyes. Arch. Ophthalmol. 1997, 115, 1137–1141. [Google Scholar] [CrossRef]
- Quaranta, L.; Katsanos, A.; Russo, A.; Riva, I. 24-hour intraocular pressure and ocular perfusion pressure in glaucoma. Surv. Ophthalmol. 2013, 58, 26–41. [Google Scholar] [CrossRef] [PubMed]
- Wasilewicz, R.; Varidel, T.; Simon-Zoula, S.; Schlund, M.; Cerboni, S.; Mansouri, K. First-in-human continuous 24-hour measurement of intraocular pressure and ocular pulsation using a novel contact lens sensor. Br. J. Ophthalmol. 2020, 104, 1519–1523. [Google Scholar] [CrossRef] [PubMed]
- Aptel, F.; Weinreb, R.N.; Chiquet, C.; Mansouri, K. 24-h monitoring devices and nyctohemeral rhythms of intraocular pressure. Prog. Retin. Eye Res. 2016, 55, 108–148. [Google Scholar] [CrossRef]
- Kim, T.Y.; Mok, J.W.; Hong, S.H.; Jeong, S.H.; Choi, H.; Shin, S.; Joo, C.-K.; Hahn, S.K. Wireless theranostic smart contact lens for monitoring and control of intraocular pressure in glaucoma. Nat. Commun. 2022, 13, 6801. [Google Scholar] [CrossRef]
- Kim, J.; Park, J.; Park, Y.-G.; Cha, E.; Ku, M.; An, H.S.; Lee, K.-P.; Huh, M.-I.; Kim, J.; Kim, T.-S.; et al. A soft and transparent contact lens for the wireless quantitative monitoring of intraocular pressure. Nat. Biomed. Eng. 2021, 5, 772–782. [Google Scholar] [CrossRef]
- Nakakura, S. Icare® rebound tonometers: Review of their characteristics and ease of use. Clin. Ophthalmol. 2018, 12, 1245–1253. [Google Scholar] [CrossRef]
- Hsiao, Y.-C.; Dzau, J.R.; Flemmons, M.S.; Asrani, S.; Jones, S.; Freedman, S.F. Home assessment of diurnal intraocular pressure in healthy children using the Icare rebound tonometer. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus 2012, 16, 58–60. [Google Scholar] [CrossRef]
- Man, X.; Arroyo, E.; Dunbar, M.; Reed, D.M.; Shah, N.; Kagemann, L.; Kim, W.; Moroi, S.E.; Argento, A. Perilimbal sclera mechanical properties: Impact on intraocular pressure in porcine eyes. PLoS ONE 2018, 13, e0195882. [Google Scholar] [CrossRef] [PubMed]
- Pavlatos, E.; Ma, Y.; Clayson, K.; Pan, X.; Liu, J. Regional deformation of the optic nerve head and peripapillary sclera during IOP elevation. Investig. Ophthalmol. Vis. Sci. 2018, 59, 3779–3788. [Google Scholar] [CrossRef]
- Hong, Y.; Wang, C.; Loewen, R.; Waxman, S.; Shah, P.; Chen, S.; Esfandiari, H.; Loewen, N.A. Outflow facility and extent of angle closure in a porcine model. Graefe’s Arch. Clin. Exp. Ophthalmol. 2019, 257, 1239–1245. [Google Scholar] [CrossRef]
- Aloy, M.; Adsuara, J.E.; Cerdá-Durán, P.; Obergaulinger, M.; Esteve-Taboada, J.J.; Ferrer-Blasco, T.; Montés-Micó, R. Estimation of the mechanical properties of the eye through the study of its vibrational modes. PLoS ONE 2017, 12, e0183892. [Google Scholar] [CrossRef] [PubMed]
- Coquart, L.; Depeursinge, C.; Curnier, A.; Ohayon, R. A fluid-structure interaction problem in biomechanics: Prestressed vibrations of the eye by the finite element method. J. Biomech. 1992, 25, 1105–1118. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Li, Y.; Chen, R.; Shung, K.K.; Richter, G.; Zhou, Q. Correlation of IOP with corneal acoustic impedance in porcine eye model. BioMed Res. Int. 2017, 2017, 2959717. [Google Scholar] [CrossRef]
- He, X.; Liu, J. Correlation of corneal acoustic and elastic properties in a canine eye model. Investig. Ophthalmol. Vis. Sci. 2011, 52, 731–736. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Sit, A.J.; Zhang, X. Noninvasive measurement of wave speed of porcine cornea in ex vivo porcine eyes for various intraocular pressures. Ultrasonics 2017, 81, 86–92. [Google Scholar] [CrossRef]
- Shih, P.-J.; Guo, Y.-R. Resonance frequency of fluid-filled and prestressed spherical shell—A model of the human eyeball. J. Acoust. Soc. Am. 2016, 139, 1784–1792. [Google Scholar] [CrossRef]
- Kling, S.; Akca, I.B.; Chang, E.W.; Scarcelli, G.; Bekesi, N.; Yun, S.-H.; Marcos, S. Numerical model of optical coherence tomographic vibrography imaging to estimate corneal biomechanical properties. J. R. Soc. Interface 2014, 11, 20140920. [Google Scholar] [CrossRef] [PubMed]
- Shih, P.J.; Cao, H.J.; Huang, C.J.; Wang, I.J.; Shih, W.P.; Yen, J.Y. A corneal elastic dynamic model derived from Scheimpflug imaging technology. Ophthalmic Physiol. Opt. 2015, 35, 663–672. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Chung, Y.; Yeon, Y.; Cho, H.; Lim, H.W.; Park, J.; Lee, W.J. A pilot study for intraocular pressure measurements based on vibroacoustic parameters. Sci. Rep. 2021, 11, 1264. [Google Scholar] [CrossRef] [PubMed]
- Fahy, F.; Thoma, J. Sound and Structural Vibration Radiation, Transmission and Response. J. Dyn. Syst. Meas. Control. 1986, 108, 374. [Google Scholar] [CrossRef]
Input Voltage (V) | Signal Type | Frequency Range (Hz) | Averaging Time (s) | |
---|---|---|---|---|
0.4 | 1 | Random | 0~3200 | 30 |
Experimental Case | IOP (mmHg) | Vibration Experiment Outcomes | ||||
---|---|---|---|---|---|---|
Initial | Final | Average | NVTFR | |||
Eye 1 | 17.4 | 17.1 | 17.25 | 2025.982 | 1644.741 | 1.2318 |
25.1 | 22.3 | 23.7 | 2024.131 | 1813.608 | 1.1161 | |
20.1 | 18.0 | 19.05 | 2113.224 | 1860.628 | 1.1358 | |
26.7 | 22.6 | 24.65 | 2052.942 | 1828.111 | 1.1230 | |
14.3 | 13.4 | 13.85 | 2047.114 | 1674.261 | 1.2083 | |
Eye 2 | 20.2 | 19.6 | 19.9 | 2461.591 | 2026.280 | 1.2148 |
9.6 | 7.9 | 8.75 | 2450.163 | 1925.601 | 1.2724 | |
12.2 | 10.1 | 11.15 | 2494.068 | 2036.790 | 1.2245 | |
24.2 | 21.3 | 22.75 | 2464.795 | 2170.038 | 1.1358 | |
21.3 | 19.0 | 20.15 | 5461.470 | 2047.716 | 1.2021 | |
Eye 3 | 32.3 | 30.0 | 31.15 | 2174.268 | 1977.458 | 1.0995 |
34.0 | 30.8 | 32.40 | 2231.677 | 2063.924 | 1.0813 | |
27.8 | 24.2 | 26.00 | 2291.617 | 2016.355 | 1.1365 | |
24.2 | 21.6 | 22.90 | 2258.818 | 1935.864 | 1.1668 | |
21.6 | 13.8 | 17.70 | 2324.023 | 1948.758 | 1.1926 | |
Eye 4 | 29.0 | 25.1 | 27.05 | 2166.710 | 1888.592 | 1.1473 |
25.1 | 20.3 | 22.70 | 2159.476 | 1846.510 | 1.1695 | |
20.3 | 15.9 | 18.10 | 2167.298 | 1832.082 | 1.1830 | |
20.9 | 17.0 | 18.95 | 2118.316 | 1860.406 | 1.1386 | |
22.3 | 18.3 | 20.30 | 2095.362 | 1831.448 | 1.1441 | |
Eye 5 | 26.1 | 20.2 | 23.15 | 2263.755 | 1917.842 | 1.1804 |
25.2 | 23.1 | 24.15 | 2281.210 | 2022.404 | 1.1280 | |
15.1 | 13.2 | 14.15 | 2213.719 | 1906.526 | 1.1611 | |
17.2 | 17.1 | 17.15 | 2163.504 | 1887.492 | 1.1462 | |
13.1 | 11.1 | 12.10 | 2162.250 | 1815.901 | 1.1907 | |
Eye 6 | 32.2 | 18.9 | 25.55 | 2155.994 | 1952.718 | 1.1041 |
18.9 | 16.1 | 17.50 | 2115.020 | 1810.555 | 1.1682 | |
16.1 | 12.4 | 14.25 | 2190.454 | 1871.339 | 1.1705 | |
12.4 | 11.2 | 11.80 | 2172.288 | 1798.966 | 1.2075 | |
11.2 | 10.1 | 10.65 | 2137.333 | 1727.825 | 1.2370 |
Fixed Effects | Estimate | SE | p-Values |
---|---|---|---|
Intercept | 145.0734 | 17.109 | <0.001 |
NVTFR | −107.4694 | 14.647 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeon, S.; Toh, G.; Park, J.; Lee, W.J. Exploring the Feasibility of Estimating Intraocular Pressure Using Vibrational Response of the Eye: A Methodological Approach. Sensors 2024, 24, 3997. https://doi.org/10.3390/s24123997
Jeon S, Toh G, Park J, Lee WJ. Exploring the Feasibility of Estimating Intraocular Pressure Using Vibrational Response of the Eye: A Methodological Approach. Sensors. 2024; 24(12):3997. https://doi.org/10.3390/s24123997
Chicago/Turabian StyleJeon, Seongwook, Gyungmin Toh, Junhong Park, and Won June Lee. 2024. "Exploring the Feasibility of Estimating Intraocular Pressure Using Vibrational Response of the Eye: A Methodological Approach" Sensors 24, no. 12: 3997. https://doi.org/10.3390/s24123997
APA StyleJeon, S., Toh, G., Park, J., & Lee, W. J. (2024). Exploring the Feasibility of Estimating Intraocular Pressure Using Vibrational Response of the Eye: A Methodological Approach. Sensors, 24(12), 3997. https://doi.org/10.3390/s24123997