Deterministic Localization for Fully Automatic Operation: A Survey and Experiments
Abstract
:1. Introduction
- (1)
- We provide an overview of the localization techniques and solutions of accuracy enhancement. The localization certainty of common solutions is discussed, mainly including anchor deployment optimization and NLoS interference mitigation. We point out that deterministic localization requires the stricter solution to promote, but it cannot be ignored in the future.
- (2)
- The related localization enhancement experiments are carried out on the rail transit line. As a result, deterministic localization is analyzed from both academic researches and well-established solutions in practice.
2. Wireless Localization Fundamentals
2.1. Basic Localization Technologies
Localization Technology | Scheme | Region | Accuracy | Reference |
---|---|---|---|---|
LTE | Deep-learning-based framework | 6.27 km2, outdoor | 13.18 m | [35] |
Fingerprint of RSS and KF | 30 m × 40 m, indoor | 2.78 m | [36] | |
TDoA and fingerprint of RSS | 30 m × 10 m, indoor | ≈1.00 m | [11] | |
Fingerprint of CSI and deep learning | 3.6 m × 6 m, indoor/360 m × 195 m, outdoor | 0.47 m/19.90 m | [39] | |
Machine learning and outlier correction | outdoor | 32.2 m | [37] | |
TDoA, JMM and KF | 700 m × 800 m, outdoor | 19.00 m (@67%) * | [38] | |
ToA and probabilistic machine-learning | 120 m × 80 m, outdoor | ≤10.00 m | [63] | |
UWB | ToA and derivative UKF | 10 m × 10 m, indoor | 0.05 m | [42] |
TDoA and clock drift elimination | 128 m3, indoor | 0.08 m | [40] | |
Bias compensation and cooperative localization | 60 m × 60 m, outdoor | 0.87% failure | [43] | |
MLE and anchor deployment optimization | 1.2 m × 3.2 m × 2.6 m, indoor | 0.15 m | [12] | |
ToA and LoS/NLoS interference mitigation | 30 m × 5 m, outdoor | 0.38 m | [19] | |
Deep location network and ranging correction | 6 m × 5 m, indoor | 0.23 m | [64] | |
TDoA and semidefinite relaxation | 14 m × 13 m | 2.20–2.50 m | [41] | |
RSS and enhanced geometric filtering | 6.6 m × 5.4 m, indoor | 0.16 m | [65] | |
Bluetooth | AoA and self-localization | 12 m × 12 m, outdoor | 3.60 m | [45] |
FPFE based on Minkowski distance | 5 m × 8 m, indoor | 0.68 m | [49] | |
RSS measurements and multilateration | 6.15 m × 28.15 m, indoor | 3.80 m | [46] | |
AoA and elevation-of-angle | 3 m × 10 m × 3 m, indoor 10 m × 13 m × 3 m, indoor 20 m × 25 m × 8 m, indoor | 0.48 m 0.67 m ≈0.48 m | [47] | |
Confidence-interval fuzzy model | 85 m2, indoor | 1.00 m (@97%) | [50] | |
RSS-based and optimization | 100 m × 100 m, outdoor | 0.78–1.68 m | [48] | |
Wi-Fi | Wi-Fi fingerprint-based and KNN | ≈1000 m2, indoor | 3.11 m | [51] |
Feature fusion by channel state information | 30 m2/10 m × 2 m, indoor | 0.8 m/1.1 m | [52] | |
Fingerprint of RSS and multiple classifiers | 73 m × 20 m, indoor | 2.50 m | [53] | |
Group of fingerprints, including RSS | 308.4 m2, indoor | 2.79 m | [54] | |
AoA and co-localization algorithm | 16 m × 10 m/8.5 m × 5.5 m/ 10 m × 8 m/6 m × 2.1 m, indoor | 0.35 (@50%) | [66] | |
Fusion of multiple channel state information | 6 m × 7.8 m/3.5 m × 4.2 m, indoor | 1.62 m/2.41 m | [55] | |
Round-trip phase and factor graph optimization | 4 m × 4 m | 0.26–0.56 m | [57] | |
Channel frequency response database and fingerprint | 1 m × 1 m | 0.05 m | [56] | |
Mixed | RSS of LTE, odometry and particle filter | 500 m × 500 m, outdoor | 13.07 m | [67] |
Tightly coupled visual–inertial–UWB | 11 m × 11 m, indoor | 0.21–0.66 m | [62] | |
UWB ranging and Wi-Fi fingerprint | 30 m × 30 m, indoor | ≤0.85 m | [25] | |
UWB ranging, IMU and tight integration | 120 m × 200 m, outdoor | 2.55 m | [59] | |
Data-driven IMU and Bluetooth | 52.5 m × 52.5 m, indoor | 1.01–1.46 m | [61] | |
Wi-Fi, Bluetooth and HTF algorithm | 62 m × 28 m, indoor | 1.25–2.29 m | [68] | |
Wi-Fi, IMU and LSTM algorithm | 10 m × 15 m, indoor 50 m × 2 m, indoor | 0.51–1.17 m 1.35–2.16 m | [60] |
2.2. Basic Localization Techniques
3. Localization Enhancement by Anchor Deployment Optimization
4. Localization Enhancement by LoS/NLoS Interference Mitigation
5. Experimental Evaluation of UWB Localization
5.1. Anchor Deployment Optimization with ROI Enhancement
5.2. Metal Interference Mitigation and Trajectory Constraint
6. Conclusions
7. Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, R.; Lou, Y.; Song, W.; Wang, Y.; Tu, Z. Experimental Evaluation of Monocular Visual–Inertial SLAM Methods for Freight Railways. IEEE Sens. J. 2023, 23, 23282–23293. [Google Scholar] [CrossRef]
- Jiao, Y.; Wang, Y.; Ding, X.; Wang, M.; Xiong, R. Deterministic Optimality for Robust Vehicle Localization Using Visual Measurements. IEEE Trans. Intell. Transp. Syst. 2022, 23, 5397–5410. [Google Scholar] [CrossRef]
- Wang, Z.; Spasojevic, P.; Schlake, B.W.; Mulay, N.; Zaman, A.F.; Liu, X. Development and Testing of a UWB-Based Vehicle-to-Vehicle (V2V) Ranging System for Self-Propelled Rail Vehicles. IEEE Trans. Veh. Technol. 2024, 73, 3247–3261. [Google Scholar] [CrossRef]
- Reid, T.G.; Houts, S.E.; Cammarata, R.; Mills, G.; Agarwal, S.; Vora, A.; Pandey, G. Localization requirements for autonomous vehicles. arXiv 2019, arXiv:1906.01061. [Google Scholar]
- Martalò, M.; Perri, S.; Verdano, G.; De Mola, F.; Monica, F.; Ferrari, G. Improved UWB TDoA-Based Positioning Using a Single Hotspot for Industrial IoT Applications. IEEE Trans. Ind. Inf. 2022, 18, 3915–3925. [Google Scholar] [CrossRef]
- Cai, Z.; Zhou, Y.; Qi, Y.; Zhuang, W.; Deng, L. A Millimeter Wave Dual-Lens Antenna for IoT-Based Smart Parking Radar System. IEEE Internet Things J. 2021, 8, 418–427. [Google Scholar] [CrossRef]
- Hausler, S.; Xu, M.; Garg, S.; Chakravarty, P.; Shrivastava, S.; Vora, A.; Milford, M. Improving Worst Case Visual Localization Coverage via Place-Specific Sub-Selection in Multi-Camera Systems. IEEE Robot. Autom. Lett. 2022, 7, 10112–10119. [Google Scholar] [CrossRef]
- Qin, Z.; Meng, Z.; Li, Z.; Gao, N.; Zhang, Z.; Meng, Q.; Zhen, D. Compensating the NLoS Occlusion Errors of UWB for Pedestrian Localization With MIMU. IEEE Sens. J. 2023, 23, 12146–12158. [Google Scholar] [CrossRef]
- Vats, T.; Singh, S. A Survey of Localization Techniques for Navigation in Road Networks. In Proceedings of the 2023 6th International Conference on Contemporary Computing and Informatics (IC3I), Gautam Buddha Nagar, India, 14–16 September 2023; Volume 6, pp. 869–874. [Google Scholar] [CrossRef]
- Zhu, Y.; Hu, J. To Hide Anchor’s Position in Range-Based Wireless Localization via Secret Sharing. IEEE Wirel. Commun. Lett. 2022, 11, 1325–1328. [Google Scholar] [CrossRef]
- He, J.; So, H.C. A Hybrid TDOA-Fingerprinting-Based Localization System for LTE Network. IEEE Sens. J. 2020, 20, 13653–13665. [Google Scholar] [CrossRef]
- Yang, B.; Yang, E.; Yu, L.; Loeliger, A. High-Precision UWB-Based Localisation for UAV in Extremely Confined Environments. IEEE Sens. J. 2022, 22, 1020–1029. [Google Scholar] [CrossRef]
- Tang, C.; Sun, W.; Zhang, X.; Zheng, J.; Sun, J.; Liu, C. A Sequential-Multi-Decision Scheme for WiFi Localization Using Vision-Based Refinement. IEEE Trans. Mob. Comput. 2024, 23, 2321–2336. [Google Scholar] [CrossRef]
- Maus, G.; Pörner, H.; Ahrens, R.; Brückmann, D. A Phase Normalization Scheme for Angle of Arrival based Bluetooth Indoor Localization. In Proceedings of the 2022 IEEE 65th International Midwest Symposium on Circuits and Systems (MWSCAS), Fukuoka, Japan, 7–10 August 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Dong, M. A Low-Cost NLOS Identification and Mitigation Method for UWB Ranging in Static and Dynamic Environments. IEEE Commun. Lett. 2021, 25, 2420–2424. [Google Scholar] [CrossRef]
- Fang, X.; Li, J.; Zhang, S.; Chen, W.; He, Z. Optimal AOA Sensor-Source Geometry With Deployment Region Constraints. IEEE Commun. Lett. 2022, 26, 793–797. [Google Scholar] [CrossRef]
- Cao, B.; Wang, S.; Ge, S.; Chen, F.; Zhang, H. UWB Anchor Node Optimization Deployment Using MGWO for the Coal Mine Working Face End. IEEE Trans. Instrum. Meas. 2023, 72, 1–12. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Z.; Cheng, N.; Hao, B.; Shen, X. Joint UAV Position and Power Optimization for Accurate Regional Localization in Space-Air Integrated Localization Network. IEEE Internet Things J. 2021, 8, 4841–4854. [Google Scholar] [CrossRef]
- He, W.N.; Huang, X.L.; Xu, Z.; Hu, F.; Yu, S. Robust Localization for Mobile Targets Along a Narrow Path with LoS/NLoS Interference. IEEE Internet Things J. 2024, 11, 20853–20866. [Google Scholar] [CrossRef]
- Yu, K.; Wen, K.; Li, Y.; Zhang, S.; Zhang, K. A Novel NLOS Mitigation Algorithm for UWB Localization in Harsh Indoor Environments. IEEE Trans. Veh. Technol. 2019, 68, 686–699. [Google Scholar] [CrossRef]
- Reid, T.G.; Neish, A. Localization & mapping requirements for level 2+ autonomous vehicles. In Proceedings of the 2023 International Technical Meeting of The Institute of Navigation, Long Beach, CA, USA, 24–26 January 2023; pp. 107–123. [Google Scholar]
- Ma, Z.; Liu, F.; Qiao, H.; Liu, S.; Lv, X. Joint Optimization of Anchor Deployment and Power Allocation in Wireless Network Localization. IEEE Commun. Lett. 2020, 24, 1086–1089. [Google Scholar] [CrossRef]
- Yang, Z.; Bi, S.; Zhang, Y.J.A. Deployment Optimization of Dual-Functional UAVs for Integrated Localization and Communication. IEEE Trans. Wirel. Commun. 2023, 22, 9672–9687. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, Y.; Tian, L. TOA-based NLOS error mitigation algorithm for 3D indoor localization. China Commun. 2020, 17, 63–72. [Google Scholar] [CrossRef]
- Kong, Q. WiFi-Aided Ultra Wideband Localization in Indoor NLoS Environment. IEEE Commun. Lett. 2024, 28, 537–541. [Google Scholar] [CrossRef]
- Laoudias, C.; Moreira, A.; Kim, S.; Lee, S.; Wirola, L.; Fischione, C. A Survey of Enabling Technologies for Network Localization, Tracking, and Navigation. IEEE Commun. Surv. Tutor. 2018, 20, 3607–3644. [Google Scholar] [CrossRef]
- Sang, C.L.; Adams, M.; Hesse, M.; Rückert, U. Bidirectional UWB Localization: A Review on an Elastic Positioning Scheme for GNSS-Deprived Zones. IEEE J. Indoor Seamless Position. Navig. 2023, 1, 161–179. [Google Scholar] [CrossRef]
- Savić, T.; Vilajosana, X.; Watteyne, T. Constrained Localization: A Survey. IEEE Access 2022, 10, 49297–49321. [Google Scholar] [CrossRef]
- Caceres Najarro, L.A.; Song, I.; Kim, K. Fundamental Limitations and State-of-the-Art Solutions for Target Node Localization in WSNs: A Review. IEEE Sens. J. 2022, 22, 23661–23682. [Google Scholar] [CrossRef]
- Motroni, A.; Buffi, A.; Nepa, P. A Survey on Indoor Vehicle Localization Through RFID Technology. IEEE Access 2021, 9, 17921–17942. [Google Scholar] [CrossRef]
- Trevlakis, S.E.; Boulogeorgos, A.A.A.; Pliatsios, D.; Querol, J.; Ntontin, K.; Sarigiannidis, P.; Chatzinotas, S.; Di Renzo, M. Localization as a Key Enabler of 6G Wireless Systems: A Comprehensive Survey and an Outlook. IEEE Open J. Commun. Soc. 2023, 4, 2733–2801. [Google Scholar] [CrossRef]
- Chalvatzaras, A.; Pratikakis, I.; Amanatiadis, A.A. A Survey on Map-Based Localization Techniques for Autonomous Vehicles. IEEE Trans. Intell. Veh. 2023, 8, 1574–1596. [Google Scholar] [CrossRef]
- Lashkari, B.; Rezazadeh, J.; Farahbakhsh, R.; Sandrasegaran, K. Crowdsourcing and Sensing for Indoor Localization in IoT: A Review. IEEE Sens. J. 2019, 19, 2408–2434. [Google Scholar] [CrossRef]
- Shan, X.; Cabani, A.; Chafouk, H. A Survey of Vehicle Localization: Performance Analysis and Challenges. IEEE Access 2023, 11, 107085–107107. [Google Scholar] [CrossRef]
- Mohamed, A.; Tharwat, M.; Magdy, M.; Abubakr, T.; Nasr, O.; Youssef, M. DeepFeat: Robust Large-Scale Multi-Features Outdoor Localization in LTE Networks Using Deep Learning. IEEE Access 2022, 10, 3400–3414. [Google Scholar] [CrossRef]
- Zheng, H.; Zhong, X.; Liu, P. RSS-based Indoor Passive Localization Using Clustering and Filtering in a LTE Network. In Proceedings of the 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Antwerp, Belgium, 25–28 May 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Zhang, Y.; Rao, W.; Yuan, M.; Zeng, J.; Hui, P. Context-Aware Telco Outdoor Localization. IEEE Trans. Mob. Comput. 2022, 21, 1211–1225. [Google Scholar] [CrossRef]
- Radnosrati, K.; Fritsche, C.; Gunnarsson, F.; Gustafsson, F.; Hendeby, G. Localization in 3GPP LTE Based on One RTT and One TDOA Observation. IEEE Trans. Veh. Technol. 2020, 69, 3399–3411. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Z.; Zhang, S.; Xu, S.; Cao, S. Fingerprint-Based Localization Using Commercial LTE Signals: A Field-Trial Study. In Proceedings of the 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), Honolulu, HI, USA, 22–25 September 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Chiasson, D.; Lin, Y.; Kok, M.; Shull, P.B. Asynchronous Hyperbolic UWB Source-Localization and Self-Localization for Indoor Tracking and Navigation. IEEE Internet Things J. 2023, 10, 11655–11668. [Google Scholar] [CrossRef]
- Wang, G.; So, A.M.C.; Li, Y. Robust Convex Approximation Methods for TDOA-Based Localization Under NLOS Conditions. IEEE Trans. Signal Process. 2016, 64, 3281–3296. [Google Scholar] [CrossRef]
- Qi, M.; Xue, B.; Wang, W. Calibration and Compensation of Anchor Positions for UWB Indoor Localization. IEEE Sens. J. 2024, 24, 689–699. [Google Scholar] [CrossRef]
- Zhu, J.; Kia, S.S. Decentralized Cooperative Localization With LoS and NLoS UWB Inter-Agent Ranging. IEEE Sens. J. 2022, 22, 5447–5456. [Google Scholar] [CrossRef]
- Powell, M. Latest News on the Bluetooth Market in 2023. 2023. Available online: https://www.bluetooth.com/zh-cn/2023-market-update/ (accessed on 15 June 2023).
- Paulino, N.; Pessoa, L.M. Self-Localization via Circular Bluetooth 5.1 Antenna Array Receiver. IEEE Access 2023, 11, 365–395. [Google Scholar] [CrossRef]
- Janczak, D.; Walendziuk, W.; Sadowski, M.; Zankiewicz, A.; Konopko, K.; Slowik, M.; Gulewicz, M. Indoor Positioning Based on Bluetooth RSSI Mean Estimator for the Evacuation Supervision System Application. IEEE Access 2024, 12, 55843–55858. [Google Scholar] [CrossRef]
- Huang, C.; Tian, Z.; He, W.; Liu, K.; Li, Z. Spotlight: A 3-D Indoor Localization System in Wireless Sensor Networks Based on Orientation and RSSI Measurements. IEEE Sens. J. 2023, 23, 26662–26676. [Google Scholar] [CrossRef]
- Sun, Y.; Finnerty, P.; Ohta, C. BLE-Based Outdoor Localization With Two-Ray Ground-Reflection Model Using Optimization Algorithms. IEEE Access 2024, 12, 45164–45175. [Google Scholar] [CrossRef]
- Jiang, J.R.; Subakti, H.; Liang, H.S. Fingerprint Feature Extraction for Indoor Localization. Sensors 2021, 21, 5434. [Google Scholar] [CrossRef] [PubMed]
- Tomažič, S.; Dovžan, D.; Škrjanc, I. Confidence-Interval-Fuzzy-Model-Based Indoor Localization. IEEE Trans. Ind. Electron. 2019, 66, 2015–2024. [Google Scholar] [CrossRef]
- Xu, Z.; Huang, B.; Jia, B.; Li, W.; Lu, H. A Boundary Aware WiFi Localization Scheme Based on UMAP and KNN. IEEE Commun. Lett. 2022, 26, 1789–1793. [Google Scholar] [CrossRef]
- Ding, J.; Wang, Y.; Fu, S.; Si, H.; Zhang, J.; Gao, S. Multiview Features Fusion and AdaBoost Based Indoor Localization on WiFi Platform. IEEE Sens. J. 2022, 22, 16607–16616. [Google Scholar] [CrossRef]
- Guo, X.; Elikplim, N.R.; Ansari, N.; Li, L.; Wang, L. Robust WiFi Localization by Fusing Derivative Fingerprints of RSS and Multiple Classifiers. IEEE Trans. Ind. Inf. 2020, 16, 3177–3186. [Google Scholar] [CrossRef]
- Li, L.; Guo, X.; Ansari, N.; Li, H. A Hybrid Fingerprint Quality Evaluation Model for WiFi Localization. IEEE Internet Things J. 2019, 6, 9829–9840. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, H. 3D-WiFi: 3D Localization With Commodity WiFi. IEEE Sens. J. 2019, 19, 5141–5152. [Google Scholar] [CrossRef]
- Magsino, E.R.; Ho, I.W.H.; Situ, Z. The effects of dynamic environment on channel frequency response-based indoor positioning. In Proceedings of the 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Montreal, QC, Canada, 8–13 October 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Shi, F.; Li, W.; Tang, C.; Fang, Y.; Brennan, P.V.; Chetty, K. Decimeter-Level Indoor Localization Using WiFi Round-Trip Phase and Factor Graph Optimization. IEEE J. Sel. Areas Commun. 2024, 42, 177–191. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, X.; Chen, Y.; Li, M. A Lightweight and Accurate Localization Algorithm Using Multiple Inertial Measurement Units. IEEE Robot. Autom. Lett. 2020, 5, 1508–1515. [Google Scholar] [CrossRef]
- Chen, L.; Gao, Z.; Xu, Q.; Yang, C.; Li, Y. Comprehensive Evaluation of Robust and Tight Integration of UWB and Low-Cost IMU. IEEE Sens. J. 2023, 23, 26411–26422. [Google Scholar] [CrossRef]
- Zhang, M.; Jia, J.; Chen, J.; Deng, Y.; Wang, X.; Aghvami, A.H. Indoor Localization Fusing WiFi With Smartphone Inertial Sensors Using LSTM Networks. IEEE Internet Things J. 2021, 8, 13608–13623. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, B.; Bao, S.; Liu, X.; Gu, Z.; Li, L.; Zhao, Y.; Zhu, J.; Li, Q. A Data-Driven Inertial Navigation/Bluetooth Fusion Algorithm for Indoor Localization. IEEE Sens. J. 2022, 22, 5288–5301. [Google Scholar] [CrossRef]
- Hu, C.; Huang, P.; Wang, W. Tightly Coupled Visual-Inertial-UWB Indoor Localization System With Multiple Position-Unknown Anchors. IEEE Robot. Autom. Lett. 2024, 9, 351–358. [Google Scholar] [CrossRef]
- Pérez-Cruz, F.; Olmos, P.M.; Zhang, M.M.; Huang, H. Probabilistic Time of Arrival Localization. IEEE Signal Process. Lett. 2019, 26, 1683–1687. [Google Scholar] [CrossRef]
- Yang, B.; Li, J.; Shao, Z.; Zhang, H. Self-Supervised Deep Location and Ranging Error Correction for UWB Localization. IEEE Sens. J. 2023, 23, 9549–9559. [Google Scholar] [CrossRef]
- Lei, T.; Pan, S.; Guang, Q.; Wang, K.; Yu, Y. Enhanced Geometric Filtering Method Based Device-Free Localization With UWB Wireless Network. IEEE Trans. Veh. Technol. 2021, 70, 7734–7748. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, D.; Song, R.; Yin, P.; Chen, Y. Multiple WiFi Access Points Co-Localization Through Joint AoA Estimation. IEEE Trans. Mob. Comput. 2024, 23, 1488–1502. [Google Scholar] [CrossRef]
- Ismail, K.; Liu, R.; Zheng, J.; Yuen, C.; Guan, Y.L.; Tan, U.X. Mobile Robot Localization Based On Low-Cost LTE And Odometry In GPS-Denied Outdoor Environment. In Proceedings of the 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), Dali, China, 6–8 December 2019; pp. 2338–2343. [Google Scholar] [CrossRef]
- Luo, R.C.; Hsiao, T.J. Indoor Localization System Based on Hybrid Wi-Fi/BLE and Hierarchical Topological Fingerprinting Approach. IEEE Trans. Veh. Technol. 2019, 68, 10791–10806. [Google Scholar] [CrossRef]
- Chan, Y.; Ho, K. A simple and efficient estimator for hyperbolic location. IEEE Trans. Signal Process. 1994, 42, 1905–1915. [Google Scholar] [CrossRef]
- Hadir, A.; Zine-Dine, K.; Bakhouya, M. Improvements of Centroid Localization Algorithm for Wireless Sensor Networks. In Proceedings of the 2020 5th International Conference on Cloud Computing and Artificial Intelligence: Technologies and Applications (CloudTech), Marrakesh, Morocco, 24–26 November 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Zhang, J.; Feng, X.; Guo, J. A Hybrid Localization Algorithm Based on Error Correction. In Proceedings of the 2019 IEEE International Conferences on Ubiquitous Computing & Communications (IUCC) and Data Science and Computational Intelligence (DSCI) and Smart Computing, Networking and Services (SmartCNS), Shenyang, China, 21–23 October 2019; pp. 792–797. [Google Scholar] [CrossRef]
- Gui, L.; Xiao, F.; Zhou, Y.; Shu, F.; Val, T. Connectivity Based DV-Hop Localization for Internet of Things. IEEE Trans. Veh. Technol. 2020, 69, 8949–8958. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Zhang, Y.; Jiang, T. Underwater Anchor-AUV Localization Geometries With an Isogradient Sound Speed Profile: A CRLB-Based Optimality Analysis. IEEE Trans. Wirel. Commun. 2018, 17, 8228–8238. [Google Scholar] [CrossRef]
- Hajiakhondi-Meybodi, Z.; Mohammadi, A.; Hou, M.; Plataniotis, K.N. DQLEL: Deep Q-Learning for Energy-Optimized LoS/NLoS UWB Node Selection. IEEE Trans. Signal Process. 2022, 70, 2532–2547. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, J. Anchor Deployment for Belief Propagation-Based Localization: A Topological Method. IEEE Commun. Lett. 2024, 28, 293–297. [Google Scholar] [CrossRef]
- Du, S.; Huang, B.; Jia, B.; Li, W. Optimal Anchor Placement for Localization in Large-Scale Wireless Sensor Networks. In Proceedings of the 2019 IEEE 21st International Conference on High Performance Computing and Communications, IEEE 17th International Conference on Smart City and IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), Zhangjiajie, China, 10–12 August 2019; pp. 2409–2415. [Google Scholar] [CrossRef]
- Saeed, N.; Al-Naffouri, T.Y.; Alouini, M.S. Outlier Detection and Optimal Anchor Placement for 3-D Underwater Optical Wireless Sensor Network Localization. IEEE Trans. Commun. 2019, 67, 611–622. [Google Scholar] [CrossRef]
- Yang, T.Y.; Yu, M.L.; Wu, R.B. Efficient Deployment of UWB Anchors for Wide-Area Positioning Coverage Using Bipartite Graph. IEEE Access 2023, 11, 19418–19427. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Huang, S.P.; Wu, T.W.; Tsai, W.T.; Liou, C.Y.; Mao, S.G. UWB System for Indoor Positioning and Tracking With Arbitrary Target Orientation, Optimal Anchor Location, and Adaptive NLOS Mitigation. IEEE Trans. Veh. Technol. 2020, 69, 9304–9314. [Google Scholar] [CrossRef]
- Zhao, W.; Goudar, A.; Schoellig, A.P. Finding the Right Place: Sensor Placement for UWB Time Difference of Arrival Localization in Cluttered Indoor Environments. IEEE Robot. Autom. Lett. 2022, 7, 6075–6082. [Google Scholar] [CrossRef]
- Li, X.; Cai, J.; Zhao, R.; Li, C.; He, C.; He, D. Optimizing Anchor Node Deployment for Fingerprint Localization With Low-Cost and Coarse-Grained Communication Chips. IEEE Internet Things J. 2022, 9, 15297–15311. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, Q. Anchor selection with anchor location uncertainty in wireless sensor network localization. In Proceedings of the 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, 22–27 May 2011; pp. 4172–4175. [Google Scholar] [CrossRef]
- Venkata Lakshmi, Y.; Singh, P.; Abouhawwash, M.; Mahajan, S.; Pandit, A.K.; Ahmed, A.B. Improved Chan Algorithm Based Optimum UWB Sensor Node Localization Using Hybrid Particle Swarm Optimization. IEEE Access 2022, 10, 32546–32565. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, L.; Wang, W.; Zhang, K. Hyperbolic Localization Algorithm in Mixed LOS-NLOS Environments. In Proceedings of the 2020 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS), Shenyang, China, 28–30 July 2020; pp. 847–850. [Google Scholar] [CrossRef]
- Chen, H.; Wang, G.; Ansari, N. Improved Robust TOA-Based Localization via NLOS Balancing Parameter Estimation. IEEE Trans. Veh. Technol. 2019, 68, 6177–6181. [Google Scholar] [CrossRef]
- Wu, H.; Liang, L.; Mei, X.; Zhang, Y. A Convex Optimization Approach For NLOS Error Mitigation in TOA-Based Localization. IEEE Signal Process. Lett. 2022, 29, 677–681. [Google Scholar] [CrossRef]
- Yang, K.; Wang, G.; Luo, Z.Q. Efficient Convex Relaxation Methods for Robust Target Localization by a Sensor Network Using Time Differences of Arrivals. IEEE Trans. Signal Process. 2009, 57, 2775–2784. [Google Scholar] [CrossRef]
- Su, Z.; Shao, G.; Liu, H. Semidefinite Programming for NLOS Error Mitigation in TDOA Localization. IEEE Commun. Lett. 2018, 22, 1430–1433. [Google Scholar] [CrossRef]
- He, C.; Yuan, Y.; Tan, B. Alternating Direction Method of Multipliers for TOA-Based Positioning Under Mixed Sparse LOS/NLOS Environments. IEEE Access 2021, 9, 28407–28412. [Google Scholar] [CrossRef]
- He, W.N.; Huang, X.L.; Xu, Z.W. LOS/NLOS Detection in UWB Localization System with Anchors Deployment Along a Narrow Path. In Communications, Signal Processing, and Systems; Springer: Singapore, 2024; pp. 245–254. [Google Scholar] [CrossRef]
- Pak, J.M.; Ahn, C.K.; Shi, P.; Shmaliy, Y.S.; Lim, M.T. Distributed Hybrid Particle/FIR Filtering for Mitigating NLOS Effects in TOA-Based Localization Using Wireless Sensor Networks. IEEE Trans. Ind. Electron. 2017, 64, 5182–5191. [Google Scholar] [CrossRef]
- Stahlke, M.; Kram, S.; Ott, F.; Feigl, T.; Mutschler, C. Estimating TOA Reliability With Variational Autoencoders. IEEE Sens. J. 2022, 22, 5133–5140. [Google Scholar] [CrossRef]
Type | Scheme | Application Scope | Reference |
---|---|---|---|
Type 1 | CRLB as localization performance function and using gradient descent method to solve optimal solution | ToA | [73] |
Multi-objective optimization for anchor deployment, power allocation and solving by BPSO | ToA and AoA | [22] | |
Considering LoS/NLoS propagations and balancing localization error and battery life | TDoA | [74] | |
Joint optimization for minimizing localization time and region coverage | ToA | [75] | |
Constructing the relationship between distance and noise, and minimizing average CRLB | ToA | [76] | |
In the present of outliers, optimizing the combination of Fisher information matrices | RSS | [77] | |
Converting the anchor deployment optimization into finding an ensemble of bipartite graphs | RSS | [78] | |
Type 2 | Presenting weight position dilution of precision and evaluating the best projection shapes of deployed anchors | ToA | [17] |
Selecting the optimal anchor group by genetic algorithm in a complex scenario with a corner | ToA and AoA | [79] | |
Predefined region of interest for obstacles, and joint optimization for NLoS effects and the number of anchors | TDoA | [80] | |
Joint optimization for localization performance, unique fingerprint and minimum number of anchors | RSS | [81] | |
With fixed number of anchors, selecting optimal anchor deployment by minimizing localization error uncertainty | ToA | [82] | |
Analysis of anchor deployment with geometric dilution of precision, Fisher information matrix and RMSE | ToA | [12] |
Type | Scheme | Application Scope | Reference |
---|---|---|---|
Type 1 | Chan algorithm and its improvements by particle swarm optimization | TDoA | [69,83,84] |
Constructing a weighted least squares problem and relaxing it into a convex semidefinite program | ToA | [85] | |
Total least square integrated with a regularization term and converted into a semidefinite program | ToA | [86] | |
Formulating a robust least square and the convex relaxation-based approximation method | TDoA | [41] | |
Considering the anchor location errors and convex relaxations for formulated maximum likelihood problem | TDoA | [87] | |
Developing a semidefinite program without prior information of LoS/NLoS channel | ToA/TDoA | [88] | |
Type 2 | Sparse optimization with L1-norm minimization and solving it by alternating direction method of multipliers | ToA | [89] |
LoS/NLoS detection by fuzzy comprehensive evaluation and equality estimating location by ECTSRLS algorithm | ToA | [20] | |
Markov decision process and select the anchor nodes with LoS propagation according to deep Q-learning | TDoA | [74] | |
Iterative algorithm for ranging error estimation and LoS/NLoS identification with the error tetrahedron | ToA | [90] | |
Distributed filtering for NLoS identification and hybrid particle/finite impulse response filter for failure | ToA | [91] | |
Variational autoencoder for NLoS detection and EKF based on the predicted score | TDoA | [92] |
Localization Scheme | Location 1 (cm) | Location 2 (cm) | Location 3 (cm) | Location 4 (cm) | Average RMSE (cm) |
---|---|---|---|---|---|
Practical location | (200, 1058) | (200, 1160) | (200, 1817) | (200, 1908) | / |
ToA technique | (271.7, 1102.9) | (258.2, 1199) | (−11.6, 1914.9) | (97.3, 1995.4) | 145.4 |
Interference mitigation | (306.3, 1090.8) | (291.6, 1184) | (149.5, 1861.3) | (196, 1944.5) | 82.5 |
Whole scheme | (208.9, 1101.4) | (207.6, 1193.2) | (195.8, 1856.3) | (199.7, 1944.1) | 38.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, W.-N.; Huang, X.-L. Deterministic Localization for Fully Automatic Operation: A Survey and Experiments. Sensors 2024, 24, 4128. https://doi.org/10.3390/s24134128
He W-N, Huang X-L. Deterministic Localization for Fully Automatic Operation: A Survey and Experiments. Sensors. 2024; 24(13):4128. https://doi.org/10.3390/s24134128
Chicago/Turabian StyleHe, Wan-Ning, and Xin-Lin Huang. 2024. "Deterministic Localization for Fully Automatic Operation: A Survey and Experiments" Sensors 24, no. 13: 4128. https://doi.org/10.3390/s24134128
APA StyleHe, W. -N., & Huang, X. -L. (2024). Deterministic Localization for Fully Automatic Operation: A Survey and Experiments. Sensors, 24(13), 4128. https://doi.org/10.3390/s24134128