sensors-logo

Journal Browser

Journal Browser

Moving Object Detection and Control Using Remote Sensing and Artificial Intelligence II

A special issue of Sensors (ISSN 1424-8220). This special issue belongs to the section "Remote Sensors".

Deadline for manuscript submissions: closed (31 May 2024) | Viewed by 3070

Special Issue Editors


E-Mail Website
Guest Editor
Department of Ship Automation, Faculty of Marine Electrical Engineering, Gdynia Maritime University, 83 Morska Str., 81-225 Gdynia, Poland
Interests: control engineering; optimization; differential games; artificial intelligence; sensitivity of control; remote sensing; technology development; applications
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Ship Automation, Faculty of Marine Electrical Engineering, Gdynia Maritime University, 83 Morska Str., 81-225 Gdynia, Poland
Interests: engineering; computer science; automation and control systems; transportation; robotics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Moving objects constitute a significant part of all technical objects, for which the method of controlling their movement significantly affects both operating costs and the accuracy as well as safety of transport tasks. This applies to land, sea, and air objects in terms of manned and unmanned facilities. Remote sensing devices, such as radar, lidar, and other highly specialized measurement solutions, are used in the detection as well as control of moving objects. When planning and implementing the motion control of objects, there are many possible acceptable solutions from which the best or optimal solution should be selected. To find it, both static and dynamic optimization deterministic methods, in addition to heuristic methods of particle swarms, are used, as are very effective methods of artificial intelligence in the form of evolutionary algorithms and neuro-fuzzy regulators. The topics of interest also include other AI approaches applied for the detection, path planning, and motion control of various moving objects, such as autonomous vehicles, self-driving cars, aircrafts, and ships, based on machine learning, neural networks as well as deep learning, fuzzy logic, and multiagent as well as expert systems.

In addition, moving objects are often affected by various types of interference, which are compensated for via adaptive algorithms using the following methods: self-tuning, a model reference system, or gain scheduling.

When carrying out transport tasks, there are situations of passing by many other objects. In such situations, the subjectivity of the operator of an object in assessing the navigational situation is important. They must take into account the applicable legal rules in addition to the possibility of making a mistake and contributing to a collision situation, which can be considered as a conflict situation. Game theory, which is a branch of modern mathematics, including the theory of conflict situations and the construction as well as analysis of their models, comes to the rescue. Therefore, it is appropriate to treat the process of passing objects safely as a game, taking into account the cooperation or non-cooperation between objects.

For this Special Issue, we seek innovative approaches that use remote sensing and control to develop appropriate algorithms of computer-aided maneuvering decisions, calculating all possible solutions of the task and proposing one of the best ones.

We welcome review papers, case studies, computer simulations, technology developments, and applications.

You may choose our Joint Special Issue in Remote Sensing.

Prof. Dr. Józef Lisowski
Dr. Agnieszka Lazarowska
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sensors is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • land, sea, and aerial moving objects
  • manned and unmanned objects
  • remote sensing
  • artificial intelligence
  • control engineering
  • multicriteria optimization
  • adaptive control
  • game theory application
  • sensitivity of control
  • machine learning
  • neural networks and deep learning
  • fuzzy logic
  • multiagent systems
  • expert systems
  • autonomous vehicles
  • swarm intelligence

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 916 KiB  
Article
Deterministic Localization for Fully Automatic Operation: A Survey and Experiments
by Wan-Ning He and Xin-Lin Huang
Sensors 2024, 24(13), 4128; https://doi.org/10.3390/s24134128 - 25 Jun 2024
Viewed by 892
Abstract
With the rapid development of fully automatic operation (FAO) and location-based services, the evaluation criteria of average localization accuracy can no longer meet our demands, in favor of deterministic localization. However, most localization researches modeled localization performance function and enhanced it by minimizing [...] Read more.
With the rapid development of fully automatic operation (FAO) and location-based services, the evaluation criteria of average localization accuracy can no longer meet our demands, in favor of deterministic localization. However, most localization researches modeled localization performance function and enhanced it by minimizing average localization root mean square error (RMSE). The performance degradation in a small region was not considered. In this paper, we present a survey of deterministic localization and analyze the relationship between accuracy and certainty. In this paper, two common solutions of localization enhancement are presented and their localization certainties are discussed. Furthermore, we carry out related localization enhancement experiments in rail transit line and analyze their improvement on deterministic localization. The experimental results show that the overall localization performance is improved, while the deterministic localization requires the stricter solution to promote. Full article
Show Figures

Figure 1

21 pages, 23080 KiB  
Article
A Novel Framework for Image Matching and Stitching for Moving Car Inspection under Illumination Challenges
by Andreas El Saer, Lazaros Grammatikopoulos, Giorgos Sfikas, George Karras and Elli Petsa
Sensors 2024, 24(4), 1083; https://doi.org/10.3390/s24041083 - 7 Feb 2024
Viewed by 1719
Abstract
Vehicle exterior inspection is a critical operation for identifying defects and ensuring the overall safety and integrity of vehicles. Visual-based inspection of moving objects, such as vehicles within dynamic environments abounding with reflections, presents significant challenges, especially when time and accuracy are of [...] Read more.
Vehicle exterior inspection is a critical operation for identifying defects and ensuring the overall safety and integrity of vehicles. Visual-based inspection of moving objects, such as vehicles within dynamic environments abounding with reflections, presents significant challenges, especially when time and accuracy are of paramount importance. Conventional exterior inspections of vehicles require substantial labor, which is both costly and prone to errors. Recent advancements in deep learning have reduced labor work by enabling the use of segmentation algorithms for defect detection and description based on simple RGB camera acquisitions. Nonetheless, these processes struggle with issues of image orientation leading to difficulties in accurately differentiating between detected defects. This results in numerous false positives and additional labor effort. Estimating image poses enables precise localization of vehicle damages within a unified 3D reference system, following initial detections in the 2D imagery. A primary challenge in this field is the extraction of distinctive features and the establishment of accurate correspondences between them, a task that typical image matching techniques struggle to address for highly reflective moving objects. In this study, we introduce an innovative end-to-end pipeline tailored for efficient image matching and stitching, specifically addressing the challenges posed by moving objects in static uncalibrated camera setups. Extracting features from moving objects with strong reflections presents significant difficulties, beyond the capabilities of current image matching algorithms. To tackle this, we introduce a novel filtering scheme that can be applied to every image matching process, provided that the input features are sufficient. A critical aspect of this module involves the exclusion of points located in the background, effectively distinguishing them from points that pertain to the vehicle itself. This is essential for accurate feature extraction and subsequent analysis. Finally, we generate a high-quality image mosaic by employing a series of sequential stereo-rectified pairs. Full article
Show Figures

Figure 1

Back to TopTop