Navigation Systems of Autonomous Underwater and Surface Vehicles

A special issue of Robotics (ISSN 2218-6581).

Deadline for manuscript submissions: 31 May 2025 | Viewed by 2342

Special Issue Editor


E-Mail Website
Guest Editor
Department of Ship Automation, Faculty of Marine Electrical Engineering, Gdynia Maritime University, 83 Morska Str., 81-225 Gdynia, Poland
Interests: engineering; computer science; automation and control systems; transportation; robotics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Autonomous vehicles are becoming more and more prevalent in different areas of the industry and our everyday life. Their dynamic development can also be observed for use in maritime environments, where we can distinguish unmanned surface vehicles (USVs) and unmanned underwater vehicles (UUVs). The navigation process is one of the vital tasks that such marine crafts have to perform. The vehicle has to be able to move safely between its current position and a defined final position, allowing for collision avoidance with both static and dynamic obstacles. The application area of USVs and UUVs is very broad, and covers i.a. oceanographic research, maritime traffic and coastal areas monitoring, search and rescue, conducting inspections, maintenance, and surveillance tasks in the offshore industry.

This Special Issue is aimed at presenting high quality research and the state of the art in the area of unmanned surface and underwater vehicles. The design and development of navigation systems for USVs and UUVs is the main focus of this Special Issue; therefore, papers related to applied sensors and sensor fusion, obstacle avoidance methods and systems, motion control systems, and algorithms are welcome.

Potential topics include, but are not limited to, the following:

  • autonomous navigation systems of USVs and UUVs;
  • sensors and sensor fusion in USVs and UUVs;
  • obstacle avoidance methods for USVs and UUVs;
  • machine learning, swarm intelligence, and other computational intelligence methods for USVs and UUVs;
  • motion control methods for USVs and UUVs;
  • mission planning;
  • USVs and UUVs applications;
  • swarms of USVs and UUVs.

Dr. Agnieszka Lazarowska
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Robotics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • USVs and UUVs
  • autonomous navigation
  • obstacle avoidance
  • machine learning
  • swarm intelligence
  • motion control
  • mission planning

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

26 pages, 34170 KiB  
Article
Navigating ALICE: Advancements in Deployable Docking and Precision Detection for AUV Operations
by Yevgeni Gutnik, Nir Zagdanski, Sharon Farber, Tali Treibitz and Morel Groper
Robotics 2025, 14(1), 5; https://doi.org/10.3390/robotics14010005 - 31 Dec 2024
Viewed by 793
Abstract
Autonomous Underwater Vehicles (AUVs) operate independently using onboard batteries and data storage, necessitating periodic recovery for battery recharging and data transfer. Traditional surface-based launch and recovery (L&R) operations pose significant risks to personnel and equipment, particularly in adverse weather conditions. Subsurface docking stations [...] Read more.
Autonomous Underwater Vehicles (AUVs) operate independently using onboard batteries and data storage, necessitating periodic recovery for battery recharging and data transfer. Traditional surface-based launch and recovery (L&R) operations pose significant risks to personnel and equipment, particularly in adverse weather conditions. Subsurface docking stations provide a safer alternative but often involve complex fixed installations and costly acoustic positioning systems. This work introduces a comprehensive docking solution featuring the following two key innovations: (1) a novel deployable docking station (DDS) designed for rapid deployment from vessels of opportunity, operating without active acoustic transmitters; and (2) an innovative sensor fusion approach that combines the AUV’s onboard forward-looking sonar and camera data. The DDS comprises a semi-submersible protective frame and a subsurface, heave-compensated docking component equipped with backlit visual markers, an electromagnetic (EM) beacon, and an EM lifting device. This adaptable design is suitable for temporary installations and in acoustically sensitive or covert operations. The positioning and guidance system employs a multi-sensor approach, integrating range and azimuth data from the sonar with elevation data from the vision camera to achieve precise 3D positioning and robust navigation in varying underwater conditions. This paper details the design considerations and integration of the AUV system and the docking station, highlighting their innovative features. The proposed method was validated through software-in-the-loop simulations, controlled seawater pool experiments, and preliminary open-sea trials, including several docking attempts. While further sea trials are planned, current results demonstrate the potential of this solution to enhance AUV operational capabilities in challenging underwater environments while reducing deployment complexity and operational costs. Full article
(This article belongs to the Special Issue Navigation Systems of Autonomous Underwater and Surface Vehicles)
Show Figures

Figure 1

17 pages, 1570 KiB  
Article
Backstepping-Based Nonsingular Terminal Sliding Mode Control for Finite-Time Trajectory Tracking of a Skid-Steer Mobile Robot
by Mulugeta Debebe Teji, Ting Zou and Dinku Seyoum Zeleke
Robotics 2024, 13(12), 180; https://doi.org/10.3390/robotics13120180 - 16 Dec 2024
Viewed by 827
Abstract
Skid-steer mobile robots (SSMRs) are ubiquitous in indoor and outdoor applications. Their accurate trajectory tracking control is quite challenging due to the uncertainties arising from the complex behavior of frictional force, external disturbances, and fluctuations in the instantaneous center of rotation (ICR) during [...] Read more.
Skid-steer mobile robots (SSMRs) are ubiquitous in indoor and outdoor applications. Their accurate trajectory tracking control is quite challenging due to the uncertainties arising from the complex behavior of frictional force, external disturbances, and fluctuations in the instantaneous center of rotation (ICR) during turning maneuvers. These uncertainties directly disturb velocities, hindering the robot from tracking the velocity command. This paper proposes a nonsingular terminal sliding mode control (NTSMC) based on backstepping for a four-wheel SSMR to cope with the aforementioned challenges. The strategy seeks to mitigate the impacts of external disturbances and model uncertainties by developing an adaptive law to estimate the integrated lumped outcome. The finite time stability of the closed-loop system is proven using Lyapunov’s theory. The designed NTSMC input is continuous and avoids noticeable chattering. It was noted in the simulation analysis that the proposed control strategy is strongly robust against disturbance and modeling uncertainties, demonstrating effective trajectory tracking performance in the presence of disturbance and modeling uncertainties. Full article
(This article belongs to the Special Issue Navigation Systems of Autonomous Underwater and Surface Vehicles)
Show Figures

Figure 1

Back to TopTop