Explore Ultrasonic-Induced Mechanoluminescent Solutions towards Realising Remote Structural Health Monitoring
Abstract
:1. Introduction
1.1. Structural Health Monitoring
1.2. State of the Art of Mechanoluminescence-Based SHM
1.3. Potential of Ultrasonic-Induced ML for Remote SHM
2. Theory
2.1. Mechanisms behind Elastico-ML and Material Selection
2.2. Threshold Pressure
3. Results
3.1. Modelling and Simulation Results
3.2. Experimental Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mishra, M.; Lourenço, P.B.; Ramana, G.V. Structural health monitoring of civil engineering structures by using the internet of things: A review. J. Build. Eng. 2022, 48, 103954. [Google Scholar] [CrossRef]
- Abdulkarem, M.; Samsudin, K.; Rokhani, F.Z.; ARasid, M.F. Wireless sensor network for structural health monitoring: A contemporary review of technologies, challenges, and future direction. Struct. Health Monit. 2020, 19, 693–735. [Google Scholar] [CrossRef]
- Yao, K.; Chen, S.; Lai, S.C.; Yousry, Y.M. Enabling Distributed Intelligence with Ferroelectric Multifunctionalities. Adv. Sci. 2022, 9, 2103842. [Google Scholar] [CrossRef] [PubMed]
- Mitra, M.; Gopalakrishnan, S. Guided wave based structural health monitoring: A review. Smart Mater. Struct. 2016, 25, 053001. [Google Scholar] [CrossRef]
- Philibert, M.; Yao, K.; Gresil, M.; Soutis, C. Lamb waves-based technologies for structural health monitoring of composite structures for aircraft applications. Eur. J. Mater. 2022, 2, 436–474. [Google Scholar] [CrossRef]
- Chandra, B.P.; Rathore, A.S. Classification of Mechanoluminescence. Cryst. Res. Technol. 1995, 30, 885–896. [Google Scholar] [CrossRef]
- Zhang, H.; Wei, Y.; Huang, X.; Huang, W. Recent development of elastico-mechanoluminescent phosphors. J. Lumin. 2019, 207, 137–148. [Google Scholar] [CrossRef]
- Zhuang, Y.; Xie, R.-J. Mechanoluminescence Rebrightening the Prospects of Stress Sensing: A Review. Adv. Mater. 2021, 33, 2005925. [Google Scholar] [CrossRef] [PubMed]
- Chandra, V.K.; Chandra, B.P.; Jha, P. Strong luminescence induced by elastic deformation of piezoelectric crystals. Appl. Phys. Lett. 2013, 102, 241105. [Google Scholar] [CrossRef]
- Chandra, V.K.; Chandra, B.P.; Jha, P. Self-recovery of mechanoluminescence in ZnS:Cu and ZnS:Mn phosphors by trapping of drifting charge carriers. Appl. Phys. Lett. 2013, 103, 161113. [Google Scholar] [CrossRef]
- Terasaki, N.; Fujio, Y.; Horiuchi, S.; Akiyama, H.; Itabashi, M. Mechanoluminescent study for optimization of joint design on cross tension test. J. Adhes. 2022, 98, 637–646. [Google Scholar] [CrossRef]
- Shin, H.G.; Timilsina, S.; Sohn, K.-S.; Kim, J.S. Digital Image Correlation Compatible Mechanoluminescent Skin for Structural Health Monitoring. Adv. Sci. 2022, 9, 2105889. [Google Scholar] [CrossRef]
- Carani, L.B.; Martin, T.D.; Eze, V.O.; Okoli, O.I. Impact sensing and localization in composites structures with embedded mechanoluminescence-perovskite sensors. Sens. Actuators A Phys. 2022, 346, 113843. [Google Scholar] [CrossRef]
- Terasaki, N.; Xu, C.N. Historical-log recording system for crack opening and growth based on mechanoluminescent flexible sensor. IEEE Sens. J. 2013, 13, 3999–4004. [Google Scholar] [CrossRef]
- Liu, L.; Xu, C.N.; Yoshida, A.; Tu, D.; Ueno, N.; Kainuma, S. Scalable Elasticoluminescent Strain Sensor for Precise Dynamic Stress Imaging and Onsite Infrastructure Diagnosis. Adv. Mater. Technol. 2018, 4, 1800336. [Google Scholar] [CrossRef]
- Wang, W.; Tasset, A.; Pyatnitskiy, I.; Mohamed, H.G.; Taniguchi, R.; Zhou, R.; Rana, M.; Lin, P.; Capocyan, S.L.C.; Bellamkonda, A.; et al. Ultrasound triggered organic mechanoluminescence materials. Adv. Drug Deliv. Rev. 2022, 186, 114343. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.T.; Yang, Y.L.; Li, T.; Yuan, J.Y.; Li, Q.L.; Zhao, J.T.; Wan, D.Y.; Zhang, Z.J. Enhanced mechanically induced red-light emitting novel mechanoluminescence materials for ultrasonic visualization and monitoring applications. J. Mater. Chem. C Mater. 2021, 9, 5868–5875. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Y.; Dai, H.; Tong, W.; Zhou, Y.; Zhao, J.; An, Q. A self-powered porous ZnS/PVDF-HFP mechanoluminescent composite film that converts human movement into eye-readable light. Nanoscale 2018, 10, 5489–5495. [Google Scholar] [CrossRef] [PubMed]
- Terasaki, N.; Yamada, H.; Xu, C.N. Ultrasonic wave induced mechanoluminescence and its application for photocatalysis as ubiquitous light source. Catal. Today 2013, 201, 203–208. [Google Scholar] [CrossRef]
- Zhan, T.; Xu, C.N.; Fukuda, O.; Yamada, H.; Li, C. Direct visualization of ultrasonic power distribution using mechanoluminescent film. Ultrason. Sonochem. 2011, 18, 436–439. [Google Scholar] [CrossRef]
- Chen, L.; Wong, M.C.; Bai, G.; Jie, W.; Hao, J. White and green light emissions of flexible polymer composites under electric field and multiple strains. Nano Energy 2015, 14, 372–381. [Google Scholar] [CrossRef]
- Kersemans, M.; Smet, P.F.; Lammens, N.; Degrieck, J.; Van Paepegem, W. Fast reconstruction of a bounded ultrasonic beam using acoustically induced piezo-luminescence. Appl. Phys. Lett. 2015, 107, 234102. [Google Scholar] [CrossRef]
- Michels, S.E.; Lajoinie, G.; Hedayatrasa, S.; Versluis, M.; Kersemans, M.; Smet, P.F. A theoretical framework for acoustically produced luminescence: From thermometry to ultrasound pressure field mapping. J. Lumin. 2022, 248, 118940. [Google Scholar] [CrossRef]
- Chandra, V.K.; Chandra, B.P.; Jha, P. Models for intrinsic and extrinsic elastico and plastico-mechanoluminescence of solids. J. Lumin. 2013, 138, 267–280. [Google Scholar] [CrossRef]
- Feng, A.; Smet, P.F. A Review of Mechanoluminescence in Inorganic Solids: Compounds, Mechanisms, Models and Applications. Materials 2018, 11, 484. [Google Scholar] [CrossRef]
- Mukhina, M.V.; Tresback, J.; Ondry, J.C.; Akey, A.; Alivisatos, A.P.; Kleckner, N. Single-Particle Studies Reveal a Nanoscale Mechanism for Elastic, Bright, and Repeatable ZnS:Mn Mechanoluminescence in a Low-Pressure Regime. ACS Nano 2021, 15, 4115–4133. [Google Scholar] [CrossRef]
- Wang, F.; Wang, F.; Wang, X.; Wang, S.; Jiang, J.; Liu, Q.; Hao, X.; Han, L.; Wang, J.; Pan, C.; et al. Mechanoluminescence enhancement of ZnS:Cu,Mn with piezotronic effect induced trap-depth reduction originated from PVDF ferroelectric film. Nano Energy 2019, 63, 103861. [Google Scholar] [CrossRef]
- Chen, C.; Zhu, J.; Zhang, Y.; Wang, A. Preparation and Luminescence Properties of PVDF/ZnS:Mn Flexible Thin-Film Sensors. Coatings 2022, 12, 449. [Google Scholar] [CrossRef]
- Krishnan, S.; Van der Walt, H.; Venkatesh, V.; Sundaresan, V.B. Dynamic characterization of elastico-mechanoluminescence towards structural health monitoring. J. Intell. Mater. Syst. Struct. 2017, 28, 2458–2464. [Google Scholar] [CrossRef]
- Qian, X.; Cai, Z.; Su, M.; Li, F.; Fang, W.; Li, Y.; Zhou, X.; Li, Q.; Feng, X.; Li, W.; et al. Printable Skin-Driven Mechanoluminescence Devices via Nanodoped Matrix Modification. Adv. Mater. 2018, 30, 1800291. [Google Scholar] [CrossRef]
- Chandra, B.P.; Chandra, V.K.; Jha, P.; Sonwane, V.D. Threshold pressure for mechanoluminescence of macrocrystals, microcrystals and nanocrystals of doped zinc sulphide. Phys. B Condens. Matter 2016, 491, 12–16. [Google Scholar] [CrossRef]
- Cai, T.; Guo, S.; Li, Y.; Peng, D.; Zhao, X.; Wang, W.; Liu, Y. Ultra-sensitive mechanoluminescent ceramic sensor based on air-plasma-sprayed SrAl2O4:Eu2+, Dy3+ coating. Sens. Actuators A Phys. 2020, 315, 112246. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, H.; Yu, R.; Dong, L.; Peng, D.; Zhang, A.; Zhang, Y.; Liu, H.; Pan, C.; Wang, Z.L. Dynamic pressure mapping of personalized handwriting by a flexible sensor matrix based on the mechanoluminescence process. Adv. Mater. 2015, 27, 2324–2331. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Que, M.; Chen, M.; Han, X.; Li, X.; Pan, C.; Wang, Z.L. Full Dynamic-Range Pressure Sensor Matrix Based on Optical and Electrical Dual-Mode Sensing. Adv. Mater. 2017, 29, 1605817. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.M.; Song, S.; Kim, H. Simultaneous dual-channel blue/green emission from electro-mechanically powered elastomeric zinc sulphide composite. Nano Energy 2016, 21, 154–161. [Google Scholar] [CrossRef]
- Staszewski, W.J.; Lee, B.C.; Mallet, L.; Scarpa, F. Structural health monitoring using scanning laser vibrometry: I. Lamb wave sensing. Smart Mater. Struct. 2004, 13, 251–260. [Google Scholar] [CrossRef]
- Yu, L.; Tian, Z. Lamb wave Structural Health Monitoring Using a Hybrid PZT-Laser Vibrometer Approach. Struct. Health Monit. 2013, 12, 469–483. [Google Scholar] [CrossRef]
- Han, J.K.; Wong, V.-K.; Lim, D.B.K.; Subhodayam, P.T.C.; Luo, P.; Yao, K. Environmental Robustness and Resilience of Direct-Write Ultrasonic Transducers Made from P(VDF-TrFE) Piezoelectric Coating. Sensors 2023, 23, 4696. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Philibert, M.; Yao, K. Explore Ultrasonic-Induced Mechanoluminescent Solutions towards Realising Remote Structural Health Monitoring. Sensors 2024, 24, 4595. https://doi.org/10.3390/s24144595
Philibert M, Yao K. Explore Ultrasonic-Induced Mechanoluminescent Solutions towards Realising Remote Structural Health Monitoring. Sensors. 2024; 24(14):4595. https://doi.org/10.3390/s24144595
Chicago/Turabian StylePhilibert, Marilyne, and Kui Yao. 2024. "Explore Ultrasonic-Induced Mechanoluminescent Solutions towards Realising Remote Structural Health Monitoring" Sensors 24, no. 14: 4595. https://doi.org/10.3390/s24144595
APA StylePhilibert, M., & Yao, K. (2024). Explore Ultrasonic-Induced Mechanoluminescent Solutions towards Realising Remote Structural Health Monitoring. Sensors, 24(14), 4595. https://doi.org/10.3390/s24144595