Nanoimprinted Plasmonic Crystals for Cost-Effective SERS Identification of Methylated DNAs
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Fabrication of the Plasmonic Crystals
2.2. Optical Characterization
2.3. Raman Spectroscopy
3. Results and Discussion
3.1. Fabrication and Optical Characterization of Plasmonic Crystals
3.2. Evaluation of SERS Properties of Plasmonic Crystals
3.3. Identification of DNA Methylations by SERS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deaton, A.M.; Bird, A. CpG islands and the regulation of transcription. Genes Dev. 2011, 25, 1010–1022. [Google Scholar] [CrossRef] [PubMed]
- Wolffe, A.P.; Matzke, M.A. Epigenetics: Regulation through repression. Science 1999, 286, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Law, J.A.; Jacobsen, S.E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 2010, 11, 204–220. [Google Scholar] [CrossRef] [PubMed]
- Feng, F.; Wang, H.; Han, L.; Wang, S. Fluorescent conjugated polyelectrolyte as an indicator for convenient detection of DNA methylation. J. Am. Chem. Soc. 2008, 130, 11338–11343. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wang, J.; Su, Y.; Guerrero, C.; Zeng, Y.; Mitra, D.; Brooks, P.J.; Fisher, D.E.; Song, H.; Wang, Y. Quantitative assessment of Tet-induced oxidation products of 5-methylcytosine in cellular and tissue DNA. Nucleic Acids Res. 2013, 41, 6421–6429. [Google Scholar] [CrossRef] [PubMed]
- Kinde, B.; Gabel, H.W.; Gilbert, C.S.; Griffith, E.C.; Greenberg, M.E. Reading the unique DNA methylation landscape of the brain: Non-CpG methylation, hydroxymethylation, and MeCP2. Proc. Natl Acad. Sci. USA 2015, 112, 6800–6806. [Google Scholar] [CrossRef] [PubMed]
- Ge, C.; Fang, Z.; Chen, J.; Liu, J.; Lu, X.; Zeng, L. A simple colorimetric detection of DNA methylation. Analyst 2012, 137, 2032–2035. [Google Scholar] [CrossRef] [PubMed]
- Cheow, L.F.; Quake, S.R.; Burkholder, W.F.; Messerschmidt, D.M. Multiplexed locus-specific analysis of DNA methylation in single cells. Nat. Protoc. 2015, 10, 619–631. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Rico, E.; Alvarez-Puebla, R.A.; Guerrini, L. Direct surface-enhanced Raman scattering (SERS) spectroscopy of nucleic acids: From fundamental studies to real-life applications. Chem. Soc. Rev. 2018, 47, 4909–4923. [Google Scholar] [CrossRef]
- Barhoumi, A.; Halas, N.J. Detecting chemically modified DNA bases using surface-enhanced Raman spectroscopy. J. Phys. Chem. Lett. 2011, 2, 3118–3123. [Google Scholar] [CrossRef]
- Luo, X.; Xing, Y.; Galvan, D.D.; Zheng, E.; Wu, P.; Cai, C.; Yu, Q. Plasmonic gold nanohole array for surface-enhanced Raman scattering detection of DNA methylation. ACS Sens. 2019, 4, 1534–1542. [Google Scholar] [CrossRef]
- Ouyang, L.; Hu, Y.; Zhu, L.; Cheng, G.J.; Irudayaraj, J. A reusable laser wrapped graphene-Ag array-based SERS sensor for trace detection of genomic DNA methylation. Biosens. Bioelectron. 2017, 92, 755–762. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Guan, P.; Qin, D.; Golden, G.; Wallace, P.M. Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays. Nano Lett. 2008, 8, 1923–1928. [Google Scholar] [CrossRef]
- Im, H.; Shao, H.; Park, Y.I.; Peterson, V.M.; Castro, C.M.; Weissleder, R.; Lee, H. Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat. Biotechnol. 2014, 32, 490–495. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Guan, P.; Kvasnička, P.; Gong, H.; Homola, J.; Yu, Q. Light transmission and surface-enhanced Raman scattering of quasi-3D plasmonic nanostructure arrays with deep and shallow Fabry-Pérot nanocavities. J. Phys. Chem. C 2011, 115, 10996–11002. [Google Scholar] [CrossRef]
- Kawasaki, D.; Yamada, H.; Maeno, K.; Sueyoshi, K.; Hisamoto, H.; Endo, T. Core-Shell Structured Gold Nanocone Array for High Sensitivity and Label-Free DNA Sensing. ACS Appl. Nano Mater. 2019, 2, 4983–4990. [Google Scholar] [CrossRef]
- Fujiwara, S.; Kawasaki, D.; Sueyoshi, K.; Hisamoto, H.; Endo, T. Gold nanocone array with extensive electromagnetic fields for highly reproducible surface-enhanced Raman scattering measurements. Micromachines 2022, 13, 1182. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, D.; Yamada, H.; Sueyoshi, K.; Hisamoto, H.; Endo, T. Imprinted photonic crystal-film-based smartphone-compatible label-free optical sensor for SARS-CoV-2 testing. Biosensors 2022, 12, 200. [Google Scholar] [CrossRef] [PubMed]
- Endo, T.; Sato, M.; Kajita, H.; Okuda, N.; Tanaka, S.; Hisamoto, H. Printed two-dimensional photonic crystals for single-step label-free biosensing of insulin under wet conditions. Lab Chip 2012, 12, 1995–1999. [Google Scholar] [CrossRef]
- Endo, T.; Ozawa, S.; Okuda, N.; Yanagida, Y.; Tanaka, S.; Hatsuzawa, T. Reflectometric detection of influenza virus in human saliva using nanoimprint lithography-based flexible two-dimensional photonic crystal biosensor. Sens. Actuators B 2010, 148, 269–276. [Google Scholar] [CrossRef]
- Vignesh, S.; Ding, L.; Ah, B.C.; Fung, L.Y. Fabrication of large-area flexible SERS substrates by nanoimprint lithography. ACS Appl. Nano Mater. 2018, 1, 886–893. [Google Scholar] [CrossRef]
- Alia, C.; Daniel, M.; Nicoleta, E.D.; Ioana, B.; Diana, B.; Turcu, I. 3D silver metallized nanotrenches fabricated by nanoimprint lithography as flexible SERS detection platform. Spectrochim. Acta Part A 2022, 276, 121232. [Google Scholar] [CrossRef]
- Esteller, M.; Corn, P.G.; Baylin, S.B.; Herman, J.G. A gene hypermethylation profile of human cancer. Cancer Res. 2001, 61, 3225–3229. [Google Scholar] [PubMed]
- Zhang, Y.; Zhan, D.-S.; Xu, X.-Y.; Zhang, Z.; Hafez, M.E.; He, Y.; Li, Y.; Li, D.-W. Label-free detection of DNA methylation by surface-enhanced Raman spectroscopy using zirconium-modified silver nanoparticles. Talanta 2023, 253, 123941. [Google Scholar] [CrossRef]
- Barton, S.J.; Ward, T.E.; Hennelly, B. Algorithm for optimal denoising of Raman spectra. Anal. Methods 2018, 10, 3759–3769. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawasaki, D.; Nishitsuji, R.; Endo, T. Nanoimprinted Plasmonic Crystals for Cost-Effective SERS Identification of Methylated DNAs. Sensors 2024, 24, 4599. https://doi.org/10.3390/s24144599
Kawasaki D, Nishitsuji R, Endo T. Nanoimprinted Plasmonic Crystals for Cost-Effective SERS Identification of Methylated DNAs. Sensors. 2024; 24(14):4599. https://doi.org/10.3390/s24144599
Chicago/Turabian StyleKawasaki, Daiki, Ryosuke Nishitsuji, and Tatsuro Endo. 2024. "Nanoimprinted Plasmonic Crystals for Cost-Effective SERS Identification of Methylated DNAs" Sensors 24, no. 14: 4599. https://doi.org/10.3390/s24144599
APA StyleKawasaki, D., Nishitsuji, R., & Endo, T. (2024). Nanoimprinted Plasmonic Crystals for Cost-Effective SERS Identification of Methylated DNAs. Sensors, 24(14), 4599. https://doi.org/10.3390/s24144599