Deep Learning Soft-Decision GNSS Multipath Detection and Mitigation
Abstract
:1. Introduction
2. Correlators Characterization
3. Neural Network Training
3.1. Multipath Model
- Direct path. There are two states for the direct ray: shadowing [bad channel state] and LOS (no shadowing) [good channel state]. The probability of each state depends on the type of environment: open, rural, suburban, urban, and highway (see Table A1 in Appendix A). For LOS conditions, a Rice distribution describes the probability density function (pdf) of the signal amplitudeIn shadowed environments (bad channel state), is Rayleigh-distributed with lognormal-distributed mean power . The result is the Suzuki distribution [26]. That is,The CDF of is . The CDF of is
- Near echoes. A number of near echoes appear in the close vicinity of the receiver, with excess delays not exceeding ns. Most of the echoes will occur in this delay interval. The mean power of near echoes is exponentially decreasing: . Given a mean echo power for a fixed delay , the amplitude of the near echoes will vary around this mean value according to a Rayleigh distribution with . The number of near echoes is Poisson-distributed, with mean . Recall that the Poisson distribution provides the probability that a certain number of independent events occur in a given interval (of time or space) when, on average, events occur in that interval [27]. The corresponding pdf isThe mean power of the near echoes is exponentially decreasing with the delay , , or in logarithmic scale , , with d being expressed in dB/.For the adopted parameters of the near echoes, see Table A2.
- Far echoes. The number of far echoes is Poisson-distributed. The far echoes appear with delays . The amplitudes of the far echoes follow a Rayleigh distribution. The delays of the far echoes are uniformly distributed in [].The adopted parameters of the far echoes are indicated in Table A3.
3.2. NN Characterization
4. Simulation Results
4.1. Single Observation Decisions
4.2. Multi-Observation Decisions
4.3. Multipath Mitigation Technique Using Soft Decisions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Tables of DLR Model Parameters
Environment | Shad. Prob. | (dB) [No Shad] | (dB) [Shad] | (dB) [Shad] |
---|---|---|---|---|
open, 25° | 0 | 6.0 | - | - |
0 | 10.4 | - | - | |
rural, | 0.96 | 10.8 | −9.9 | 3.3 |
0.79 | 4.7 | −5.4 | 2.3 | |
suburban, | 0.59 | 4.7 | −6.0 | 3.5 |
0.43 | 4.0 | −7.2 | 3.2 | |
urban, | 0.79 | 3.2 | −12.1 | 6.3 |
0.56 | 8.5 | −3.0 | 2.7 | |
highway, | 0.19 | 8.4 | −5.8 | 1.7 |
0 | 7.8 | - | - |
Environment | (ns) | b () | (dB) | d (dB/) | |
---|---|---|---|---|---|
open, | 1.2 | 400 | 0.03 | −28.6 | 1.0 |
0.5 | 400 | 0.027 | −29.0 | 1.1 | |
rural, | 1.5 | 400 | 0.055 | −24.9 | 19.2 |
1.8 | 400 | 0.051 | −24.5 | 13.4 | |
suburban, | 1.4 | 400 | 0.038 | −23.8 | 23.7 |
1.5 | 400 | 0.027 | −24.4 | 23.0 | |
urban, | 4.0 | 600 | 0.063 | −17.0 | 26.2 |
3.6 | 600 | 0.081 | −23.5 | 8.5 | |
highway, | 2.2 | 600 | 0.077 | −25.8 | 7.3 |
1.8 | 600 | 0.043 | −27.1 | 29.5 |
Environment | (dB) | (s) | |
---|---|---|---|
flat terrain, | 0.3 | −26.4 | 15 |
- | - | 15 | |
rural, | 0.8 | −28.2 | 5 |
- | - | 5 | |
hilly, | 1.2 | −29.0 | 10 |
- | - | 10 | |
mountainous, | 1.8 | −28.5 | 15 |
4.0 | −21.7 | 15 |
Appendix B. Generation of a Gaussian Vector with a Given Covariance Matrix
References
- Misra, P.; Enge, P. Global Positioning System: Signals, Measurements, and Performance, 2nd ed.; Ganga-Jamuna Press: Lincoln, MA, USA, 2006. [Google Scholar]
- Kaplan, E.D.; Hegarty, C.J. Understanding GPS. Principles and Applications, 2nd ed.; Artech House: Boston, MA, USA, 2006. [Google Scholar]
- Betz, J.W. Engineering Satellite-Based Navigation and Timing; IEEE Press: Hoboken, NJ, USA; Wiley: Hoboken, NJ, USA, 2016. [Google Scholar]
- Morrisey, T.; Shallberg, K.; Townsend, B. Code Tracking Errors for Double Delta Discriminators with Narrow Correlator Spacings and Bandlimited Receivers. In Proceedings of the ION NTM 2006, Monterey, CA, USA, 18–20 January 2006; pp. 914–926. [Google Scholar]
- Townsend, R.; Fenton, P.; van Dierendonck, K.; van Nee, D. Performance Evaluation of the Multipath Estimating Delay Lock Loop. Navig. J. Inst. Navig. 1995, 42, 503–514. [Google Scholar] [CrossRef]
- Vigneau, W.; Nouvel, O.; Manzano-Jurado, M.; Sanz, C.; Abdulkader, H.; Roviras, D.; Juan, J.; Macabiau, C.; Holsters, P. Neural Networks Algorithms Prototyping to Mitigate GNSS Multipath for LEO Positioning Applications. In Proceedings of the ION GNSS 2006, Fort Worth, TX, USA, 26–29 September 2006; pp. 1752–1762. [Google Scholar]
- Quan, Y.; Lau, L.; Roberts, G.; Meng, X.; Zhang, C. Convolutional Neural Network Based Multipath Detection Method for Static and Kinematic GPS High Precision Positioning. Remote Sens. 2018, 10, 2052. [Google Scholar] [CrossRef]
- Savas, C.; Dovis, F. Multipath Detection based on K-means Clustering. In Proceedings of the ION GNSS+2019, Miami, FL, USA, 16–20 September 2019; pp. 3801–3811. [Google Scholar] [CrossRef]
- Munin, E.; Blais, A.; Couellan, N. Convolutional Neural Network for Multipath Detection in GNSS Receivers. In Proceedings of the AIDA-AT, Singapore, 3–4 February 2020; pp. 1–10. [Google Scholar] [CrossRef]
- Suzuki, T.; Amano, Y. NLOS Multipath Classification of GNSS Signal Correlation Output Using Machine Learning. Sensors 2021, 21, 2503. [Google Scholar] [CrossRef] [PubMed]
- Blais, A.; Couellan, N.; Munin, E. A Novel Image Representation of GNSS Correlation for Deep Learning Multipath Detection. Array 2022, 14, 100167. [Google Scholar] [CrossRef]
- Guillard, A.; Thevenon, P.; Milner, C. Using convolutional neural networks to detect GNSS multipath. Front. Robot. AI 2023, 10, 1106439. [Google Scholar] [CrossRef] [PubMed]
- Guillard, A.; Thevenon, P.; Milner, C.; Macabiau, C. Benefits of CNN-Based Multipath Detection for Robust GNSS Positioning. In Proceedings of the 36th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2023), Denver, CO, USA, 11–15 September 2023; pp. 283–297. [Google Scholar] [CrossRef]
- Li, H.; Borhani-Darian, P.; Wu, P.; Closas, P. Deep Neural Network Correlators for GNSS Multipath Mitigation. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 1249–1259. [Google Scholar] [CrossRef]
- Qi, X.; Xu, B.; Wang, Z.; Hsu, L.T. Rain forest-based multipath parameter estimation. GPS Solut. 2024, 2024, 126. [Google Scholar] [CrossRef]
- Mohanty, A.; Gao, G. A survey of machine learning techniques for improving Global Navigation Satellite Systems. EURASIP J. Adv. Signal Process. 2024, 2024, 73. [Google Scholar] [CrossRef]
- Xu, P.; Zhang, G.; Yang, B.; Hsu, L.T. Machine Learning in GNSS Multipath/NLOS Mitigation: Review and Benchmark. In IEEE Aerospace and Electronic Systems Magazine; IEEE: New York, NY, USA, 2024. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Jahn, A.; Buonomo, S.; Sforza, M.; Lutz, E. A Wideband Channel Model for Land Mobile Satellite Systems. In Proceedings of the IMSC’95, Ottawa, ON, Canada, 6–8 June 1995; pp. 122–127. [Google Scholar]
- Jahn, A.; Bischl, H.; Heiss, G. Channel Characterisation for Spread Spectrum Satellite Communications. In Proceedings of the ISSSTA’95, Mainz, Germany, 25 September 1996; pp. 1221–1226. [Google Scholar] [CrossRef]
- ITU-R. Radiocommunication Sector of ITU. Propagation Data Required for the Design Systems in the Land Mobile-Satellite Service, Recommendation ITU-R P.681-11; International Telecommunication Union: Geneva, Switzerland, 2019. [Google Scholar]
- Borre, K.; Fernandéz-Hernandéz, I.; López-Salcedo, J.A.; Buhiyan, M.Z.H. (Eds.) GNSS Software Receivers; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar]
- Lutz, E. Modelling of the satellite communications channel–with emphasis on the land mobile satellite channel. In Proceedings of the ESTEL, Rome, Italy, 2–5 October 2012. [Google Scholar] [CrossRef]
- Galileo. Signal-in-Space Interface Control Document, Open Service, ver. 2.0; European GNSS (Galileo): Madrid, Spain, 2021. [Google Scholar]
- Proakis, J.G. Digital Communications, 4th ed.; McGraw-Hill: New York, NY, USA, 2001. [Google Scholar]
- Suzuki, H. A Statistical Model for Urban Radio Propagation. IEEE Trans. Commun. 1977, 25, 673–680. [Google Scholar] [CrossRef]
- Papoulis, A. Probability, Random Variables, and Stochastic Processes, 3rd ed.; McGraw-Hill: New York, NY, USA, 1991. [Google Scholar]
- Kamath, U.; Liu, J.; Whitaker, J. Deep Learning for NLP and Speech Recognition; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Alzubaidi, L.; Zhang, J.; Huaidi, A.; Al-Dujaii, A.; Al-Shamma, O.; Santamaria, J.; Fadhel, M.; Al-Amidie, M.; Farhan, L. Review of deep learning: Concepts, CNN, architectures, challenges, applications, future directions. J. Big Data 2021, 8, 53. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Bartone, C. Multipath Mitigation in the Frequency Domain. In Proceedings of the IEEE PLANS 2004, Monterey, CA, USA, 26–29 April 2004; pp. 486–495. [Google Scholar] [CrossRef]
- Zhang, A.; Lipton, Z.C.; Li, M.; Smola, A.J. Dive into Deep Learning; Cambridge University Press: Cambridge, UK, 2024. [Google Scholar]
- Kay, S.M. Fundamentals of Statistical Signal Processing. Detection Theory; Prentice Hall: Upper Saddle River, NJ, USA, 1998. [Google Scholar]
- Axelrad, P.; Brown, R.G. GPS Navigation Algorithms. In GPS Positioning System: Theory and Applications; AIAA: Washington, DC, USA, 1996; Volume 1, Chapter 9; pp. 409–433. [Google Scholar]
- Groves, P.D. GNSS, Inertial, and Multisensor Integrated Navigation Systems; Artech House: Boston, MA, USA, 2008. [Google Scholar]
- Brown, R.G.; Hwang, P.Y.C. Introduction to Random Signals and Applied Kalman Filtering, 3rd ed.; Wiley: New York, NY, USA, 1997. [Google Scholar]
- Banerjee, S.; Roy, A. Linear Algebra and Matrix Analysis for Statistics; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nunes, F.; Sousa, F. Deep Learning Soft-Decision GNSS Multipath Detection and Mitigation. Sensors 2024, 24, 4663. https://doi.org/10.3390/s24144663
Nunes F, Sousa F. Deep Learning Soft-Decision GNSS Multipath Detection and Mitigation. Sensors. 2024; 24(14):4663. https://doi.org/10.3390/s24144663
Chicago/Turabian StyleNunes, Fernando, and Fernando Sousa. 2024. "Deep Learning Soft-Decision GNSS Multipath Detection and Mitigation" Sensors 24, no. 14: 4663. https://doi.org/10.3390/s24144663
APA StyleNunes, F., & Sousa, F. (2024). Deep Learning Soft-Decision GNSS Multipath Detection and Mitigation. Sensors, 24(14), 4663. https://doi.org/10.3390/s24144663