Attention Mechanism-Based Glaucoma Classification Model Using Retinal Fundus Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Process of Data Collection and Preprocessing of Fundus Structures
2.3. Glaucoma Classification Model
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Uhm, K.B.; Park, Y.S.; Kang, M.H.; Lee, J.M. Linear Discriminant Function for Detecting Glaucomatous Optic Nerve Damage. J. Korean Ophthalmol. Soc. 2004, 45, 1304–1314. [Google Scholar]
- Lee, J. Diagnosis of Diabetic Retinopathy. J. Korean Diabetes 2009, 10, 148–152. [Google Scholar] [CrossRef]
- Patton, N.; Aslam, T.M.; MacGillivray, T.; Deary, I.J.; Dhillon, B.; Eikelboom, R.H.; Yogesan, K.; Constable, I.J. Retinal image analysis: Concepts, applications and potential. Prog. Retin. Eye Res. 2006, 25, 99–127. [Google Scholar] [CrossRef] [PubMed]
- Almazroa, A.; Burman, R.; Raahemifar, K.; Lakshminarayanan, V. Optic disc and optic cup segmentation methodologies for glaucoma image detection: A survey. J. Ophthalmol. 2015, 1, 180972. [Google Scholar] [CrossRef] [PubMed]
- Orlando, J.I.; Prokofyeva, E.; del Fresno, M.; Blaschko, M.B. Convolutional neural network transfer for automated glaucoma identification. In Proceedings of the 12th International Symposium on Medical Information Processing and Analysis, Tandil, Argentina, 26 January 2017; Volume 10160. [Google Scholar]
- Sudhan, M.B.; Sinthuja, M.; Raja, S.P.; Amutharaj, J.; Latha, G.C.P.; Rachel, S.S.; Anitha, T.; Rajendran, T.; Waji, Y.A. Segmentation and classification of glaucoma using U-net with deep learning model. J. Healthc. Eng. 2022, 1, 1601354. [Google Scholar] [CrossRef] [PubMed]
- Dipu, N.M.; Shohan, S.A.; Salam, K.M.A. Ocular disease detection using advanced neural network based classification algorithms. Asian J. Converg. Technol. 2021, 7, 91–99. [Google Scholar] [CrossRef]
- Babaqi, T.; Jaradat, M.; Yildirim, A.E.; Al-Nimer, S.H.; Won, D. Eye Disease Classification Using Deep Learning Techniques. arXiv 2023, arXiv:2307.10501. [Google Scholar]
- Demir, F.; Burak, T. An effective and robust approach based on R-CNN + LSTM model and ncar feature selection for ophthalmological disease detection from fundus images. J. Pers. Med. 2021, 11, 1276. [Google Scholar] [CrossRef]
- Abbas, Q.; Albathan, M.; Altameem, A.; Almakki, R.S.; Hussain, A. Deep-Ocular: Improved Transfer Learning Architecture Using Self-Attention and Dense Layers for Recognition of Ocular Diseases. Diagnostics 2023, 13, 3165. [Google Scholar] [CrossRef] [PubMed]
- Gour, N.; Khanna, P. Multi-class multi-label ophthalmological disease detection using transfer learning based convolutional neural network. Biomed. Signal Process. Control 2021, 66, 102329. [Google Scholar] [CrossRef]
- Illingworth, J.; Kittler, J. The adaptive Hough transform. IEEE Trans. Pattern Anal. Mach. Intell. 1987, 5, 690–698. [Google Scholar] [CrossRef] [PubMed]
- Ashish, V. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30, 6000–6010. [Google Scholar]
- Larxel Ocular Disease Recognition. Available online: https://www.kaggle.com/datasets/andrewmvd/ocular-disease-recognition-odir5k (accessed on 3 May 2022).
- Reza, A.M. Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. J. VLSI Signal Process. Syst. Signal Image Video Technol. 2004, 38, 35–44. [Google Scholar] [CrossRef]
- Diakogiannis, F.I.; Waldner, F.; Caccetta, P.; Wu, C. ResUNet-a: A deep learning framework for semantic segmentation of remotely sensed data. ISPRS J. Photogramm. Remote Sens. 2020, 162, 94–114. [Google Scholar] [CrossRef]
Type of Disease | Number of Train Sets |
---|---|
Normal | 1135 |
Glaucoma | 207 |
Model | Sensitivity | Precision | F1-Score | |
---|---|---|---|---|
Glaucoma | VGG-16 [7] | 0.95 | 0.92 | 0.93 |
Transfer Learning + CNN [8] | 0.85 | 0.94 | 0.89 | |
R-CNN + LSTM [9] | 0.82 | 0.94 | 0.88 | |
AlexNet + ReliefF + XgBoost [10] | 0.98 | - | 0.98 | |
Our Model | 0.97 | 1.00 | 0.99 | |
Normal | VGG-16 [7] | 0.94 | 0.93 | 0.93 |
Transfer Learning + CNN [8] | 0.96 | 0.86 | 0.91 | |
R-CNN + LSTM [9] | 0.97 | 0.84 | 0.90 | |
AlexNet + ReliefF + XgBoost [10] | 0.98 | - | 0.98 | |
Our Model | 0.86 | 0.81 | 0.83 |
Model | Sensitivity | Precision | F1-Score | |
---|---|---|---|---|
Glaucoma | Our model w/o Attention. | 0.77 | 0.83 | 0.80 |
Our Model | 0.97 | 1.00 | 0.99 | |
Normal | Our model w/o Attention. | 0.82 | 0.75 | 0.78 |
Our Model | 0.86 | 0.81 | 0.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, Y.-S.; Song, H.-J.; Han, J.-H.; Kim, Y.-S. Attention Mechanism-Based Glaucoma Classification Model Using Retinal Fundus Images. Sensors 2024, 24, 4684. https://doi.org/10.3390/s24144684
Cho Y-S, Song H-J, Han J-H, Kim Y-S. Attention Mechanism-Based Glaucoma Classification Model Using Retinal Fundus Images. Sensors. 2024; 24(14):4684. https://doi.org/10.3390/s24144684
Chicago/Turabian StyleCho, You-Sang, Ho-Jung Song, Ju-Hyuck Han, and Yong-Suk Kim. 2024. "Attention Mechanism-Based Glaucoma Classification Model Using Retinal Fundus Images" Sensors 24, no. 14: 4684. https://doi.org/10.3390/s24144684
APA StyleCho, Y. -S., Song, H. -J., Han, J. -H., & Kim, Y. -S. (2024). Attention Mechanism-Based Glaucoma Classification Model Using Retinal Fundus Images. Sensors, 24(14), 4684. https://doi.org/10.3390/s24144684