A Joint Network of Edge-Aware and Spectral–Spatial Feature Learning for Hyperspectral Image Classification
Abstract
:1. Introduction
- We propose a novel feature extraction network (ESSN) with richer and more efficient representation of edge features and spectral–spatial features compared to existing networks;
- We designed a novel edge feature augment block. The block consists of an edge-aware part and a dynamic adjustment part. Compared with edge data augmentation methods that are not dynamically learnable, this block greatly reduces edge distortion and noise amplification;
- We propose a spectral–spatial features extraction block. It contains a spectral attention block, a spatial attention block, and a 3D–2D hybrid convolution block. Among them, the spectral attention block and the spatial attention block gain an effective feature by enhancing the information favorable for classification and suppressing noise and other interfering information. The convolution block fuses the above features.
2. Methodology
2.1. Edge Feature Augment Block
Laplacian of Gaussian Operator
2.2. Spectral–Spatial Feature Extraction Block
2.2.1. Spectral Attention Block
2.2.2. Spatial Attention Block
2.2.3. 2D–3D Convolution
3. Comparison Experiments
3.1. HSI Datasets
3.2. Experimental Setting
3.2.1. Measurement Indicators
3.2.2. Environment Configuration
3.3. Comparison Experiment Result
3.3.1. Comparative Results on the IP
3.3.2. Comparative Results on the KSC
3.3.3. Comparative Results on the PU
3.4. Depletion of Resources
4. Discussion and Analysis
4.1. Parametric Analysis
4.2. Ablation Experiment
5. Conclusions
- Exploring better edge-aware algorithms so as to reduce noise interference from isolated nodes;
- Reduce the parameter size to speed up training and increase efficiency.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, C.; He, Z.; Lou, A.; Plaza, A. RGB-to-HSV: A frequency-spectrum unfolding network for spectral super-resolution of RGB videos. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5609318. [Google Scholar] [CrossRef]
- Fei, B. Hyperspectral imaging in medical applications. In Data Handling in Science and Technology; Elsevier: Amsterdam, The Netherlands, 2019; Volume 32, pp. 523–565. [Google Scholar]
- Liu, L.; Feng, J.; Han, L.; Zhou, J.; Xu, X.; Liu, R. Mineral mapping using spaceborne Tiangong-1 hyperspectral imagery and ASTER data: A case study of alteration detection in support of regional geological survey at Jintanzi-Malianquan area, Beishan, Gansu Province, China. Geol. J. 2018, 53, 372–383. [Google Scholar] [CrossRef]
- Stuart, M.B.; McGonigle, A.J.; Willmott, J.R. Hyperspectral imaging in environmental monitoring: A review of recent developments and technological advances in compact field deployable systems. Sensors 2019, 19, 3071. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.; Kuska, M.T.; Bohnenkamp, D.; Brugger, A.; Alisaac, E.; Wahabzada, M.; Behmann, J.; Mahlein, A.-K. Benefits of hyperspectral imaging for plant disease detection and plant protection: A technical perspective. J. Plant Dis. Prot. 2018, 125, 5–20. [Google Scholar] [CrossRef]
- Qin, J.; Kim, M.S.; Chao, K.; Chan, D.E.; Delwiche, S.R.; Cho, B.-K. Line-scan hyperspectral imaging techniques for food safety and quality applications. Appl. Sci. 2017, 7, 125. [Google Scholar] [CrossRef]
- Shimoni, M.; Haelterman, R.; Perneel, C. Hypersectral imaging for military and security applications: Combining myriad processing and sensing techniques. IEEE Geosci. Remote Sens. Mag. 2019, 7, 101–117. [Google Scholar] [CrossRef]
- Deng, F.; Pu, S.; Chen, X.; Shi, Y.; Yuan, T.; Pu, S. Hyperspectral image classification with capsule network using limited training samples. Sensors 2018, 18, 3153. [Google Scholar] [CrossRef] [PubMed]
- Ma, A.; Filippi, A.M.; Wang, Z.; Yin, Z. Hyperspectral image classification using similarity measurements-based deep recurrent neural networks. Remote Sens. 2019, 11, 194. [Google Scholar] [CrossRef]
- Bakhshi, G.; Shahtalebi, K.; Momeni, M. A new adaptive algorithm for target detection in hyperspectral images. Infrared Phys. Technol. 2019, 99, 222–230. [Google Scholar] [CrossRef]
- Chen, Y.; Nasrabadi, N.M.; Tran, T.D. Sparse representation for target detection in hyperspectral imagery. IEEE J. Sel. Top. Signal Process. 2011, 5, 629–640. [Google Scholar] [CrossRef]
- Zhang, Y.; Du, B.; Zhang, L. Regularization framework for target detection in hyperspectral imagery. IEEE Geosci. Remote Sens. Lett. 2013, 11, 313–317. [Google Scholar] [CrossRef]
- Shao, Y.; Lan, J.; Zhang, Y.; Zou, J. Spectral unmixing of hyperspectral remote sensing imagery via preserving the intrinsic structure invariant. Sensors 2018, 18, 3528. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Li, J.; Li, H.-C.; Deng, C.; Plaza, A. Spectral–spatial weighted sparse regression for hyperspectral image unmixing. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3265–3276. [Google Scholar] [CrossRef]
- Ma, Y.; Jin, Q.; Mei, X.; Dai, X.; Fan, F.; Li, H.; Huang, J. Hyperspectral unmixing with Gaussian mixture model and low-rank representation. Remote Sens. 2019, 11, 911. [Google Scholar] [CrossRef]
- Landgrebe, D. Hyperspectral image data analysis. IEEE Signal Process. Mag. 2002, 19, 17–28. [Google Scholar] [CrossRef]
- Licciardi, G.; Marpu, P.R.; Chanussot, J.; Benediktsson, J.A. Linear versus nonlinear PCA for the classification of hyperspectral data based on the extended morphological profiles. IEEE Geosci. Remote Sens. Lett. 2011, 9, 447–451. [Google Scholar] [CrossRef]
- SahIn, Y.E.; Arisoy, S.; Kayabol, K. Anomaly detection with Bayesian Gauss background model in hyperspectral images. In Proceedings of the 2018 26th Signal Processing and Communications Applications Conference (SIU), Izmir, Turkey, 2–5 May 2018; pp. 1–4. [Google Scholar]
- Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778–1790. [Google Scholar] [CrossRef]
- Ye, Q.; Huang, P.; Zhang, Z.; Zheng, Y.; Fu, L.; Yang, W. Multiview learning with robust double-sided twin SVM. IEEE Trans. Cybern. 2021, 52, 12745–12758. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chen, H. Unsupervised Segmentation of Hyperspectral Images Using Gauss-Markov Random Fields and Pca. In Frontiers Of Remote Sensing Information Processing; World Scientific: Singapore, 2003; pp. 329–345. [Google Scholar]
- Ye, Q.; Gao, W.; Huang, Q. Automatic text segmentation from complex background. In Proceedings of the 2004 International Conference on Image Processing, 2004. ICIP’04., Singapore, 24–27 October 2004; pp. 2905–2908. [Google Scholar]
- Hu, W.; Huang, Y.; Wei, L.; Zhang, F.; Li, H. Deep convolutional neural networks for hyperspectral image classification. J. Sens. 2015, 2015, 258619. [Google Scholar] [CrossRef]
- Zhao, W.; Du, S. Spectral–spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4544–4554. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232–6251. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, Z.; Zhao, X.; Hong, D.; Cai, W.; Yu, C.; Yang, N.; Cai, W. Multi-feature fusion: Graph neural network and CNN combining for hyperspectral image classification. Neurocomputing 2022, 501, 246–257. [Google Scholar] [CrossRef]
- Gao, H.; Yang, Y.; Li, C.; Zhou, H.; Qu, X. Joint alternate small convolution and feature reuse for hyperspectral image classification. ISPRS Int. J. Geo-Inf. 2018, 7, 349. [Google Scholar] [CrossRef]
- He, M.; Li, B.; Chen, H. Multi-scale 3D deep convolutional neural network for hyperspectral image classification. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 3904–3908. [Google Scholar]
- Roy, S.K.; Krishna, G.; Dubey, S.R.; Chaudhuri, B.B. HybridSN: Exploring 3-D–2-D CNN feature hierarchy for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2019, 17, 277–281. [Google Scholar] [CrossRef]
- Wang, L.; Peng, J.; Sun, W. Spatial–spectral squeeze-and-excitation residual network for hyperspectral image classification. Remote Sens. 2019, 11, 884. [Google Scholar] [CrossRef]
- Wang, W.; Dou, S.; Jiang, Z.; Sun, L. A fast dense spectral–spatial convolution network framework for hyperspectral images classification. Remote Sens. 2018, 10, 1068. [Google Scholar] [CrossRef]
- Zhong, Z.; Li, J.; Luo, Z.; Chapman, M. Spectral–spatial residual network for hyperspectral image classification: A 3-D deep learning framework. IEEE Trans. Geosci. Remote Sens. 2017, 56, 847–858. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Chen, X.; Kamata, S.-I.; Zhou, W. Hyperspectral image classification based on multi-stage vision transformer with stacked samples. In Proceedings of the TENCON 2021—2021 IEEE Region 10 Conference (TENCON), Auckland, New Zealand, 7–10 December 2021; pp. 441–446. [Google Scholar]
- Ding, Y.; Zhao, X.; Zhang, Z.; Cai, W.; Yang, N. Graph sample and aggregate-attention network for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2021, 19, 5504205. [Google Scholar] [CrossRef]
- Roy, S.K.; Deria, A.; Shah, C.; Haut, J.M.; Du, Q.; Plaza, A. Spectral–spatial morphological attention transformer for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5503615. [Google Scholar] [CrossRef]
- Sun, L.; Zhao, G.; Zheng, Y.; Wu, Z. Spectral–spatial feature tokenization transformer for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5522214. [Google Scholar] [CrossRef]
- Tang, P.; Zhang, M.; Liu, Z.; Song, R. Double attention transformer for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2023, 20, 5502105. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, X.; Wen, X.; Li, X.; Dong, H.; Zang, S. Learning a 3D-CNN and Convolution Transformers for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2024, 21, 5504505. [Google Scholar]
- Wu, Y.; Weng, Q.; Lin, J.; Jian, C. RA-ViT: Patch-wise radially-accumulate module for ViT in hyperspectral image classification. J. Phys. Conf. Ser. 2022, 2278, 012009. [Google Scholar] [CrossRef]
- Yan, H.; Zhang, E.; Wang, J.; Leng, C.; Basu, A.; Peng, J. Hybrid Conv-ViT network for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2023, 20, 5506105. [Google Scholar] [CrossRef]
- Yang, X.; Cao, W.; Lu, Y.; Zhou, Y. Hyperspectral image transformer classification networks. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5528715. [Google Scholar] [CrossRef]
- Zhang, J.; Meng, Z.; Zhao, F.; Liu, H.; Chang, Z. Convolution transformer mixer for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2022, 19, 6014205. [Google Scholar] [CrossRef]
- Zhao, F.; Zhang, J.; Meng, Z.; Liu, H.; Chang, Z.; Fan, J. Multiple vision architectures-based hybrid network for hyperspectral image classification. Expert Syst. Appl. 2023, 234, 121032. [Google Scholar] [CrossRef]
- Zhong, Z.; Li, Y.; Ma, L.; Li, J.; Zheng, W.-S. Spectral–spatial transformer network for hyperspectral image classification: A factorized architecture search framework. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5514715. [Google Scholar] [CrossRef]
- Liang, H.; Bao, W.; Shen, X.; Zhang, X. HSI-mixer: Hyperspectral image classification using the spectral–spatial mixer representation from convolutions. IEEE Geosci. Remote Sens. Lett. 2022, 19, 6013005. [Google Scholar] [CrossRef]
- Shen, X.; Bao, W.; Liang, H.; Zhang, X.; Ma, X. Grouped collaborative representation for hyperspectral image classification using a two-phase strategy. IEEE Geosci. Remote Sens. Lett. 2021, 19, 5505305. [Google Scholar] [CrossRef]
- Xu, H.; He, W.; Zhang, L.; Zhang, H. Unsupervised spectral–spatial semantic feature learning for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5526714. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, M.; Zhou, J.; Jia, S. Unsupervised spatial-spectral cnn-based feature learning for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5524617. [Google Scholar] [CrossRef]
- Ziou, D.; Tabbone, S. Edge detection techniques—An overview. Pattern Recognit. Image Anal. Adv. Math. Theory Appl. 1998, 8, 537–559. [Google Scholar]
- Tu, B.; Li, N.; Fang, L.; He, D.; Ghamisi, P. Hyperspectral image classification with multi-scale feature extraction. Remote Sens. 2019, 11, 534. [Google Scholar] [CrossRef]
- Al-Khafaji, S.L.; Zhou, J.; Bai, X.; Qian, Y.; Liew, A.W.-C. Spectral-spatial boundary detection in hyperspectral images. IEEE Trans. Image Process. 2021, 31, 499–512. [Google Scholar] [CrossRef] [PubMed]
- Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Rizzolatti, G.; Craighero, L. Spatial attention: Mechanisms and theories. Adv. Psychol. Sci. 1998, 2, 171–198. [Google Scholar]
Class | 2-D CNN | 3-D CNN | HybridSN | SSRN | SSTN | SSFTT | CTMixer | 3DCT | ESSN |
---|---|---|---|---|---|---|---|---|---|
1 | 68.33 ± 22.14 | 88.60 ± 15.82 | 89.55 ± 13.29 | 82.06 ± 15.17 | 83.19 ± 20.67 | 90.92 ± 13.15 | 92.86 ± 12.42 | 84.95 ± 18.20 | 89.30 ± 12.81 |
2 | 96.29 ± 1.79 | 96.24 ± 1.30 | 98.32 ± 0.62 | 98.25 ± 0.52 | 97.75 ± 0.74 | 98.53 ± 0.69 | 98.03 ± 0.80 | 97.83 ± 0.76 | 98.39 ± 0.58 |
3 | 97.40 ± 0.94 | 95.81 ± 2.52 | 99.19 ± 0.87 | 99.02 ± 0.72 | 98.28 ± 1.35 | 98.80 ± 0.88 | 98.41 ± 1.00 | 98.56 ± 0.83 | 99.34 ± 0.56 |
4 | 92.37 ± 7.68 | 98.26 ± 2.55 | 98.77 ± 2.20 | 99.19 ± 1.53 | 97.86 ± 3.25 | 98.63 ± 2.22 | 99.23 ± 1.65 | 97.92 ± 2.56 | 98.86 ± 2.04 |
5 | 96.16 ± 1.76 | 97.86 ± 1.37 | 98.34 ± 1.21 | 98.16 ± 1.37 | 96.60 ± 1.85 | 98.27 ± 1.15 | 98.16 ± 1.22 | 98.29 ± 1.53 | 98.80 ± 1.14 |
6 | 99.27 ± 0.71 | 99.16 ± 0.68 | 99.39 ± 0.54 | 99.39 ± 0.43 | 98.52 ± 0.93 | 99.50 ± 0.45 | 99.25 ± 0.49 | 99.66 ± 0.24 | 99.48 ± 0.46 |
7 | 51.12 ± 28.95 | 92.69 ± 14.02 | 92.66 ± 12.10 | 92.66 ± 13.15 | 32.47 ± 37.73 | 92.20 ± 11.97 | 93.42 ± 7.14 | 92.68 ± 12.09 | 97.29 ± 4.57 |
8 | 100.00 ± 0.00 | 99.81 ± 0.39 | 100.00 ± 0.00 | 99.98 ± 0.07 | 99.95 ± 0.14 | 99.93 ± 0.21 | 99.98 ± 0.07 | 99.98 ± 0.07 | 99.98 ± 0.07 |
9 | 44.75 ± 35.70 | 63.97 ± 31.09 | 72.91 ± 37.31 | 71.08 ± 35.95 | 36.14 ± 40.49 | 65.35 ± 39.81 | 66.79 ± 37.46 | 72.89 ± 34.52 | 73.31 ± 36.21 |
10 | 96.60 ± 2.06 | 96.38 ± 1.33 | 98.96 ± 0.55 | 98.56 ± 0.65 | 97.52 ± 0.94 | 99.15 ± 0.75 | 98.09 ± 0.92 | 98.50 ± 0.63 | 99.10 ± 0.55 |
11 | 98.5 ± 0.69 | 98.16 ± 0.71 | 98.99 ± 0.50 | 99.00 ± 0.60 | 98.33 ± 0.59 | 98.84 ± 0.47 | 98.58 ± 0.70 | 98.75 ± 0.58 | 99.14 ± 0.47 |
12 | 93.41 ± 3.00 | 92.84 ± 3.36 | 96.11 ± 1.98 | 97.31 ± 1.47 | 94.38 ± 3.35 | 95.10 ± 2.60 | 95.98 ± 2.75 | 97.24 ± 1.73 | 97.43 ± 1.62 |
13 | 99.31 ± 0.66 | 97.89 ± 2.29 | 99.18 ± 1.96 | 99.38 ± 1.51 | 98.50 ± 3.17 | 99.64 ± 0.65 | 98.34 ± 3.17 | 99.22 ± 1.50 | 99.01 ± 1.60 |
14 | 99.72 ± 0.17 | 98.97 ± 0.35 | 99.86 ± 0.14 | 99.67 ± 0.30 | 99.71 ± 0.29 | 99.51 ± 0.50 | 99.78 ± 0.18 | 99.78 ± 0.29 | 99.78 ± 0.24 |
15 | 96.02 ± 3.50 | 96.13 ± 3.42 | 99.46 ± 0.99 | 97.49 ± 2.30 | 99.00 ± 1.10 | 98.51 ± 1.92 | 99.54 ± 0.78 | 98.56 ± 1.79 | 99.17 ± 0.92 |
16 | 89.27 ± 9.04 | 93.84 ± 3.25 | 91.22 ± 9.55 | 91.85 ± 4.78 | 87.85 ± 10.57 | 92.19 ± 4.65 | 93.17 ± 5.34 | 95.50 ± 2.54 | 95.49 ± 2.45 |
OA | 97.11 ± 0.34 | 97.19 ± 0.60 | 98.72 ± 0.26 | 98.61 ± 0.24 | 97.66 ± 0.44 | 98.57 ± 0.32 | 98.42 ± 0.26 | 98.54 ± 0.30 | 98.93 ± 0.17 |
AA | 88.91 ± 4.30 | 94.16 ± 3.71 | 95.81 ± 3.40 | 95.19 ± 3.33 | 88.50 ± 4.46 | 95.32 ± 3.31 | 95.60 ± 2.99 | 95.64 ± 3.52 | 96.49 ± 3.14 |
Kappa | 96.71 ± 0.39 | 96.80 ± 0.68 | 98.54 ± 0.30 | 98.41 ± 0.28 | 97.33 ± 0.51 | 98.37 ± 0.36 | 98.20 ± 0.30 | 98.33 ± 0.36 | 98.78 ± 0.19 |
Class | 2-D CNN | 3-D CNN | HybridSN | SSRN | SSTN | SSFTT | CTMixer | 3DCT | ESSN |
---|---|---|---|---|---|---|---|---|---|
1 | 97.76 ± 1.45 | 98.87 ± 0.92 | 99.88 ± 0.21 | 100.00 ± 0.00 | 81.15 ± 28.39 | 97.73 ± 1.76 | 89.94 ± 29.92 | 99.82 ± 0.29 | 99.90 ± 0.21 |
2 | 68.97 ± 8.81 | 81.87 ± 7.90 | 97.22 ± 2.75 | 96.16 ± 2.32 | 6.46 ± 10.68 | 86.63 ± 7.12 | 90.07 ± 15.79 | 94.28 ± 4.99 | 97.99 ± 2.17 |
3 | 90.74 ± 8.56 | 86.23 ± 6.42 | 95.43 ± 2.70 | 93.43 ± 2.00 | 0.15 ± 0.33 | 82.29 ± 8.75 | 90.27 ± 20.86 | 93.36 ± 3.78 | 95.30 ± 3.06 |
4 | 69.68 ± 5.98 | 74.79 ± 8.12 | 94.14 ± 3.50 | 90.06 ± 3.50 | 17.25 ± 16.60 | 62.24 ± 13.25 | 87.87 ± 17.11 | 91.24 ± 3.83 | 94.89 ± 3.43 |
5 | 82.52 ± 5.14 | 90.06 ± 2.65 | 97.86 ± 2.05 | 97.25 ± 2.42 | 30.86 ± 21.51 | 90.96 ± 4.61 | 93.22 ± 8.70 | 97.28 ± 2.45 | 98.76 ± 0.88 |
6 | 78.21 ± 13.17 | 85.85 ± 4.35 | 98.79 ± 1.05 | 96.46 ± 3.01 | 10.88 ± 8.68 | 85.79 ± 10.39 | 82.66 ± 24.62 | 95.40 ± 5.79 | 99.13 ± 1.04 |
7 | 86.47 ± 10.44 | 94.57 ± 5.55 | 99.28 ± 1.10 | 100.00 ± 0.00 | 0.00 ± 0.00 | 95.18 ± 11.85 | 88.92 ± 29.72 | 96.29 ± 6.00 | 100.00 ± 0.00 |
8 | 94.26 ± 3.67 | 92.27 ± 3.24 | 99.65 ± 0.45 | 99.53 ± 0.60 | 73.43 ± 18.12 | 91.23 ± 9.51 | 95.73 ± 5.44 | 98.53 ± 1.82 | 99.62 ± 0.41 |
9 | 96.36 ± 4.63 | 88.58 ± 3.51 | 99.43 ± 1.06 | 99.20 ± 1.57 | 54.91 ± 29.11 | 88.89 ± 5.78 | 98.56 ± 2.53 | 97.67 ± 2.36 | 99.55 ± 0.89 |
10 | 88.23 ± 3.64 | 93.14 ± 3.55 | 98.72 ± 1.87 | 99.88 ± 0.28 | 73.91 ± 19.82 | 95.33 ± 3.05 | 98.50 ± 2.01 | 97.25 ± 1.56 | 99.31 ± 1.22 |
11 | 98.13 ± 1.42 | 97.44 ± 1.71 | 100.00 ± 0.00 | 100.00 ± 0.00 | 89.62 ± 9.54 | 98.44 ± 1.27 | 99.85 ± 0.36 | 100.00 ± 0.00 | 100.00 ± 0.00 |
12 | 87.56 ± 2.84 | 95.48 ± 1.54 | 99.73 ± 0.44 | 99.71 ± 0.24 | 72.68 ± 10.91 | 93.71 ± 5.25 | 99.73 ± 0.36 | 98.67 ± 1.18 | 99.83 ± 0.31 |
13 | 99.93 ± 0.12 | 99.88 ± 0.16 | 100.00 ± 0.00 | 100.00 ± 0.00 | 97.82 ± 5.43 | 100.00 ± 0.00 | 99.99 ± 0.04 | 100.00 ± 0.00 | 100.00 ± 0.00 |
OA | 91.35 ± 1.22 | 93.04 ± 0.98 | 98.99 ± 0.30 | 98.60 ± 0.34 | 63.16 ± 6.48 | 92.35 ± 92.35 | 95.14 ± 9.21 | 97.87 ± 0.56 | 99.18 ± 0.32 |
AA | 87.60 ± 1.83 | 90.69 ± 1.46 | 98.47 ± 0.49 | 97.82 ± 0.48 | 46.85 ± 6.65 | 89.88 ± 1.89 | 93.49 ± 11.31 | 96.91 ± 0.99 | 98.79 ± 0.49 |
Kappa | 90.36 ± 1.36 | 92.25 ± 1.10 | 98.87 ± 0.34 | 98.44 ± 0.38 | 58.36 ± 7.49 | 91.48 ± 1.22 | 94.61 ± 10.20 | 97.61 ± 0.62 | 99.08 ± 0.36 |
Class | 2-D CNN | 3-D CNN | HybridSN | SSRN | SSTN | SSFTT | CTMixer | 3DCT | ESSN |
---|---|---|---|---|---|---|---|---|---|
1 | 96.44 ± 1.08 | 96.12 ± 0.88 | 99.85 ± 0.22 | 99.62 ± 0.26 | 95.23 ± 4.78 | 99.70 ± 0.18 | 99.59 ± 0.35 | 99.63 ± 0.27 | 99.76 ± 0.35 |
2 | 99.99 ± 0.01 | 99.79 ± 0.12 | 99.99 ± 0.01 | 99.99 ± 0.01 | 99.82 ± 0.20 | 99.99 ± 0.01 | 99.98 ± 0.04 | 99.95 ± 0.04 | 99.99 ± 0.03 |
3 | 88.773 ± 3.30 | 88.99 ± 3.73 | 95.79 ± 2.50 | 92.99 ± 2.91 | 79.55 ± 11.40 | 96.49 ± 2.24 | 97.87 ± 1.63 | 94.83 ± 2.46 | 97.38 ± 1.69 |
4 | 93.36 ± 1.52 | 92.46 ± 2.20 | 96.95 ± 1.09 | 97.32 ± 0.44 | 91.64 ± 3.41 | 95.34 ± 1.40 | 94.02 ± 1.99 | 98.32 ± 0.67 | 97.39 ± 0.86 |
5 | 99.95 ± 0.09 | 99.97 ± 0.70 | 99.99 ± 0.05 | 99.82 ± 0.25 | 96.35 ± 3.86 | 99.86 ± 0.17 | 99.91 ± 0.11 | 100.00 ± 0.00 | 99.98 ± 0.05 |
6 | 98.37 ± 0.93 | 99.24 ± 0.78 | 99.99 ± 0.04 | 99.97 ± 0.10 | 96.85 ± 8.47 | 100.00 ± 0.00 | 99.84 ± 0.47 | 99.86 ± 0.22 | 100.00 ± 0.00 |
7 | 98.17 ± 2.02 | 99.50 ± 0.66 | 99.99 ± 0.02 | 99.53 ± 0.62 | 88.32 ± 15.45 | 99.73 ± 0.55 | 99.92 ± 0.21 | 99.86 ± 0.21 | 99.97 ± 0.09 |
8 | 89.91 ± 2.98 | 90.51 ± 1.78 | 99.11 ± 0.73 | 97.82 ± 0.76 | 95.70 ± 3.84 | 97.64 ± 1.15 | 98.15 ± 1.15 | 98.62 ± 0.73 | 98.78 ± 0.67 |
9 | 93.44 ± 3.81 | 85.33 ± 3.12 | 95.07 ± 2.57 | 96.62 ± 2.01 | 83.98 ± 9.21 | 95.63 ± 1.63 | 91.68 ± 2.23 | 97.93 ± 1.35 | 96.16 ± 1.51 |
OA | 97.15 ± 0.31 | 96.97 ± 0.40 | 99.36 ± 0.12 | 99.12 ± 0.15 | 96.01 ± 1.93 | 99.13 ± 0.15 | 99.02 ± 0.24 | 99.36 ± 0.18 | 99.45 ± 0.10 |
AA | 95.38 ± 0.54 | 94.66 ± 0.73 | 98.52 ± 0.33 | 98.19 ± 0.27 | 91.94 ± 3.53 | 98.27 ± 0.35 | 97.88 ± 0.43 | 98.78 ± 0.36 | 98.82 ± 0.24 |
Kappa | 96.22 ± 0.41 | 95.99 ± 0.53 | 99.15 ± 0.16 | 98.83 ± 0.20 | 94.68 ± 2.60 | 98.85 ± 0.19 | 98.71 ± 0.32 | 99.15 ± 0.24 | 99.27 ± 0.13 |
Method | Params (M) | IP | KSC | PU | |||
---|---|---|---|---|---|---|---|
Train Time (s) | Test Time (s) | Train Time (s) | Test Time (s) | Train Time (s) | Test Time (s) | ||
2-D CNN | 0.04 | 200.85 | 2.54 | 197.80 | 2.12 | 199.25 | 5.64 |
3-D CNN | 0.62 | 253.21 | 4.03 | 255.09 | 2.64 | 268.24 | 10.52 |
HybridSN | 4.34 | 319.42 | 4.93 | 319.78 | 3.16 | 337.16 | 15.85 |
SSRN | 0.47 | 291.30 | 4.56 | 293.64 | 3.07 | 308.85 | 14.61 |
SSTN | 0.02 | 228.26 | 3.08 | 227.89 | 2.36 | 236.12 | 8-17 |
SSFTT | 0.23 | 207.70 | 2.54 | 205.24 | 2.19 | 208.70 | 5.86 |
CTMixer | 0.60 | 262.06 | 3.96 | 267.03 | 2.70 | 280.81 | 12.20 |
3DCT | 3.84 | 346.95 | 6.19 | 349.57 | 3.77 | 384.90 | 22.05 |
ESSN | 4.37 | 332.87 | 5.24 | 330.77 | 3.36 | 354.41 | 17.32 |
Patch Size | 11 × 11 | 13 × 13 | 15 × 15 | 17 × 17 | 19 × 19 |
---|---|---|---|---|---|
IP | 98.62 ± 0.31 | 98.72 ± 0.24 | 98.93 ± 0.17 | 98.76 ± 0.28 | 98.73 ± 0.25 |
KSC | 98.60 ± 0.39 | 98.93 ± 0.44 | 99.18 ± 0.32 | 99.37 ± 0.20 | 99.58 ± 0.20 |
PU | 99.18 ± 0.10 | 99.37 ± 0.16 | 99.45 ± 0.10 | 99.42 ± 0.16 | 99.37 ± 0.16 |
Case | Edge Block | Spectral Block | Spatial Block | Metric | IP | KSC | PU |
---|---|---|---|---|---|---|---|
1 | √ | × | × | OA | 98.74 ± 0.24 | 99.00 ± 0.29 | 99.39 ± 0.11 |
AA | 95.72 ± 3.01 | 98.52 ± 0.48 | 98.79 ± 0.32 | ||||
Kappa | 98.68 ± 0.27 | 98.88 ± 0.32 | 99.21 ± 0.14 | ||||
2 | × | √ | × | OA | 98.75 ± 0.25 | 99.06 ± 0.32 | 99.38 ± 0.08 |
AA | 96.02 ± 3.28 | 98.77 ± 0.45 | 98.59 ± 0.24 | ||||
Kappa | 98.58 ± 0.29 | 99.06 ± 0.36 | 99.11 ± 0.10 | ||||
3 | × | × | √ | OA | 76.25 ± 8.97 | 55.88 ± 13.02 | 89.70 ± 4.60 |
AA | 70.23 ± 11.22 | 46.93 ± 12.72 | 83.67 ± 8.98 | ||||
Kappa | 73.08 ± 9.98 | 50.30 ± 14.54 | 86.33 ± 6.09 | ||||
4 | √ | √ | × | OA | 98.82 ± 0.31 | 99.12 ± 0.18 | 99.40 ± 0.14 |
AA | 95.86 ± 3.41 | 98.72 ± 0.28 | 98.65 ± 0.44 | ||||
Kappa | 98.66 ± 0.35 | 99.03 ± 0.20 | 99.21 ± 0.18 | ||||
5 | √ | × | √ | OA | 98.77 ± 0.20 | 99.16 ± 0.23 | 99.40 ± 0.15 |
AA | 95.95 ± 3.55 | 98.75 ± 0.35 | 98.61 ± 0.43 | ||||
Kappa | 98.59 ± 0.23 | 99.04 ± 0.26 | 99.17 ± 0.20 | ||||
6 | × | √ | √ | OA | 98.77 ± 0.27 | 99.07 ± 0.24 | 99.39 ± 0.14 |
AA | 96.43 ± 3.25 | 98.75 ± 0.32 | 98.57 ± 0.29 | ||||
Kappa | 98.57 ± 0.30 | 99.07 ± 0.27 | 99.12 ± 0.19 | ||||
7 | √ | √ | √ | OA | 98.93 ± 0.17 | 99.18 ± 0.32 | 99.45 ± 0.10 |
AA | 96.49 ± 3.14 | 98.79 ± 0.49 | 98.82 ± 0.24 | ||||
Kappa | 98.78 ± 0.19 | 99.08 ± 0.36 | 99.27 ± 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, J.; Sun, Y.; Hao, Y.; Qin, S.; Yang, C.; Li, J.; Yu, X. A Joint Network of Edge-Aware and Spectral–Spatial Feature Learning for Hyperspectral Image Classification. Sensors 2024, 24, 4714. https://doi.org/10.3390/s24144714
Zheng J, Sun Y, Hao Y, Qin S, Yang C, Li J, Yu X. A Joint Network of Edge-Aware and Spectral–Spatial Feature Learning for Hyperspectral Image Classification. Sensors. 2024; 24(14):4714. https://doi.org/10.3390/s24144714
Chicago/Turabian StyleZheng, Jianfeng, Yu Sun, Yuqi Hao, Senlong Qin, Cuiping Yang, Jing Li, and Xiaodong Yu. 2024. "A Joint Network of Edge-Aware and Spectral–Spatial Feature Learning for Hyperspectral Image Classification" Sensors 24, no. 14: 4714. https://doi.org/10.3390/s24144714
APA StyleZheng, J., Sun, Y., Hao, Y., Qin, S., Yang, C., Li, J., & Yu, X. (2024). A Joint Network of Edge-Aware and Spectral–Spatial Feature Learning for Hyperspectral Image Classification. Sensors, 24(14), 4714. https://doi.org/10.3390/s24144714