Surface Acoustic Wave Sensors for Wireless Temperature Measurements above 1200 Degree Celsius
Abstract
:1. Introduction
2. Design and Tests of High-Temperature Sensors
2.1. Modelling and Simulations
2.2. Sensor Fabrication
2.3. Test System
3. Results and Discussion
3.1. Electrical Characteristics
3.2. Wireless Temperature Measurement Range and Accuracy
3.3. Lifespan and Failure Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Y.S.; Li, C.S.; Kong, F.S.; Cao, S.C. Analysis of Common Fault Diagnosis Methods for Aeroengine. In Proceedings of the Prognostics and Health Management Conference, Paris, France, 31 May–2 June 2023. [Google Scholar] [CrossRef]
- Jopek, J.; Mokrzycka, M.; Góral, M.; Koscielniak, B.; Ochal, K.; Drajewicz, M. High Temperature Protective Coatings for Aeroengine Applications. Manuf. Technol. 2023, 23, 436–448. [Google Scholar] [CrossRef]
- Yule, L.; Zaghari, B.; Harris, N.; Hill, M. Surface temperature condition monitoring methods for aerospace turbomachinery: Exploring the use of ultrasonic guided waves. Meas. Sci. Technol. 2021, 32, 052002. [Google Scholar] [CrossRef]
- Aslam, M.Z.; Zhang, H.; Sreejith, V.S.; Naghdi, M.; Ju, S. Advances in the surface acoustic wave sensors for industrial applications: Potentials, challenges, and future directions: A review. Measurement 2023, 222, 113657. [Google Scholar] [CrossRef]
- Mandal, D.; Banerjee, S. Surface Acoustic Wave (SAW) Sensors: Physics, Materials, and Applications. Sensors 2022, 22, 820. [Google Scholar] [CrossRef] [PubMed]
- Hauden, D.; Michel, M.; Gagnepain, J. Higher order temperature coefficients of quartz SAW oscillators. In Proceedings of the 32nd Annual Frequency Control Symposium, Atlantic City, NJ, USA, 31 May–2 June 1978. [Google Scholar] [CrossRef]
- Reeder, T.M.; Cullen, D.E. Surface-acoustic-wave pressure and temperature sensors. Proc. IEEE 1976, 64, 754–756. [Google Scholar] [CrossRef]
- Hamidon, M.N.; Skarda, V.; White, N.M.; Krispel, F.; Krempl, P.; Binhack, M.; Buff, W. Fabrication of high temperature surface acoustic wave devices for sensor applications. Sens. Actuator A-Phys. 2005, 123–124, 403–407. [Google Scholar] [CrossRef]
- Moreira, A.D.L.; Bartasyte, A.; Belharet, D.; Soumann, V.; Margueron, S.; Broenner, A. Stabilized Pt Interdigitated Electrodes for High- Temperature SAW Sensors. In Proceedings of the IEEE International Ultrasonics Symposium (IEEE IUS), Xi’an, China, 11–16 September 2021. [Google Scholar] [CrossRef]
- Shan, Q.C.; Shi, R.C.A.; Zhang, Q.L.; Hao, W.C.; Luo, W.; Han, T. Fabrication of grooved LGS resonators based high temperature SAW sensors and analysis with FEM simulation. J. Micromech. Microeng. 2022, 32, 105005. [Google Scholar] [CrossRef]
- Pei, G.Y.; Ma, B.H.; Zhang, Z.G.; Wang, C.Q.; Deng, J.J.; Luo, J. High-temperature Pt-Al2O3 composite nano-thick interdigital electrodes for surface acoustic wave sensors. Mater. Chem. Phys. 2022, 291, 126697. [Google Scholar] [CrossRef]
- Seifert, M.; Leszczynska, B.; Menzel, S.B.; Schmidt, H.; Gemming, T. Aluminum based high temperature thin film electrode system for wireless sensors. J. Mater. Res. Technol-JMRT 2023, 26, 1955–1961. [Google Scholar] [CrossRef]
- Francois, B.; Sakharov, S.; Droit, C.; Davis, Z.; Richter, D.; Fritze, H.; Martin, G.; Friedt, J.M.; Plessky, V.P.; Bruckner, G.; et al. Wireless Temperature Measurements above 500 degrees C using Surface Acoustic Wave Sensors. In Proceedings of the 26th European Conference on Solid-State Transducers (Eurosensors), Wroclaw Univ Technol, Fac Microsystem Elect & Photon, Krakow, Poland, 9–12 September 2012. [Google Scholar] [CrossRef]
- Peng, Z.; Greve, D.W.; Oppenheim, I.J.; Tao-Lun, C.; Malone, V. Langasite surface acoustic wave sensors: Fabrication and testing. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2012, 59, 295–303. [Google Scholar] [CrossRef]
- Kim, J.; Luis, R.; Smith, M.S.; Figueroa, J.A.; Malocha, D.C.; Nam, B.H. Concrete temperature monitoring using passive wireless surface acoustic wave sensor system. Sens. Actuator A Phys. 2015, 224, 131–139. [Google Scholar] [CrossRef]
- François, B.; Friedt, J.-M.; Martin, G.; Ballandras, S. High temperature packaging for surface acoustic wave transducers acting as passive wireless sensors. Sens. Actuator A Phys. 2015, 224, 6–13. [Google Scholar] [CrossRef]
- Ma, G.M.; Wu, Z.; Zhou, H.Y.; Jiang, J.; Chen, W.X.; Zheng, S.S.; Li, C.R.; Li, X.; Wang, Z.B. A Wireless and Passive Online Temperature Monitoring System for GIS Based on Surface-Acoustic-Wave Sensor. IEEE Trans. Power Deliv. 2016, 31, 1270–1280. [Google Scholar] [CrossRef]
- Hornsteiner, J.; Born, E.; Riha, E. Langasite for High Temperature Surface Acoustic Wave Applications. Phys. Status Solidi Appl. Res. A 1997, 163, R3–R4. [Google Scholar] [CrossRef]
- Shimamura, K.; Takeda, H.; Kohno, T.; Fukuda, T. Growth and characterization of lanthanum gallium silicate La3Ga5SiO14 single crystals for piezoelectric applications. J. Cryst. Growth 1996, 163, 388–392. [Google Scholar] [CrossRef]
- Kaminskii, A.A.; Mill, B.V.; Khodzhabagyan, G.G.; Konstantinova, A.F.; Okorochkov, A.I.; Silvestrova, I.M. Investigation of trigonal (La1−xNdx)3Ga5SiO14 crystals. I. Growth and optical Properties. Phys. Stat. Sol. A 1983, 80, 387–398. [Google Scholar] [CrossRef]
- Roshchupkin, D.; Kovalev, D. Coefficients of Thermal Expansion in La3Ga5SiO14 and Ca3TaGa3Si2O14 Crystals. Materials 2023, 16, 4470. [Google Scholar] [CrossRef] [PubMed]
- Chai, B.; Lefaucheur, J.L.; Ji, Y.Y.; Qiu, H. Growth and evaluation of large size LGS (La3Ga5SiO14) LGN (La3Ga5.5Nb0.5O14) & LGT (La3Ga5.5Ta0.5O14) single crystals. In Proceedings of the 1998 IEEE International Frequency Control Symposium (Cat. No.98CH36165), Pasadena, CA, USA, 29–29 May 1998. [Google Scholar] [CrossRef]
- Thompson, C.V. Solid-state dewetting of thin films. Annu. Rev. Mater. Res. 2012, 42, 399–434. [Google Scholar] [CrossRef]
- Richter, D.; Sakharov, S.; Forsén, E.; Mayer, E.; Reindl, L.; Fritze, H. Thin Film Electrodes for High Temperature Surface Acoustic Wave Devices. In Proceedings of the 25th Eurosensors Conference, Athens, Greece, 4–7 September 2011. [Google Scholar] [CrossRef]
- Cunha, M.P.d.; Moonlight, T.; Lad, R.; Bernhardt, G.; Frankel, D.J. P4L-1 Enabling Very High Temperature Acoustic Wave Devices for Sensor & Frequency Control Applications. In Proceedings of the 2007 IEEE Ultrasonics Symposium Proceedings, New York, NY, USA, 28–31 October 2007. [Google Scholar] [CrossRef]
- Zhang, G. Bulk and Surface Acoustic Waves: Fundamentals, Devices, and Applications, 1st ed.; Jenny Stanford Publishing: New York, NY, USA, 2022; pp. 46–47. [Google Scholar]
- Li, X.R.; Qin, L.; Guo, L.F.; Tan, Q.L. Flexible Langasite-Based Surface Acoustic Wave Strain Sensor for High-Temperature Operation. IEEE Sens. J. 2023, 23, 18022–18031. [Google Scholar] [CrossRef]
- Xu, H.; Jin, H.; Dong, S.; Song, X.; Chen, J.; Xuan, W.; Huang, S.; Shi, L.; Luo, J. Mode Analysis of Pt/LGS Surface Acoustic Wave Devices. Sensors 2020, 20, 7111. [Google Scholar] [CrossRef]
- Naumenko, N.F. Analysis of interaction between two SAW modes in Pt grating on langasite cut (0°, 138.5°, 26.6°). IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2011, 58, 2370–2377. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-C.; Chen, Z.-J.; Huang, X.; Ruan, P.; Jiang, L. Design of helical antenna for SAW passive wireless temperature sensor. In Proceedings of the 2013 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications, Changsha, China, 25–27 October 2013. [Google Scholar] [CrossRef]
- Wang, W.; Xue, X.; Fan, S.; Liu, M.; Liang, Y.; Lu, M. Development of a wireless and passive temperature-compensated SAW strain sensor. Sens. Actuator A Phys. 2020, 308, 112015. [Google Scholar] [CrossRef]
- Moulzolf, S.; Frankel, D.; Pereira da Cunha, M.; Lad, R. Electrically conductive Pt-Rh/ZrO2 and Pt-Rh/HfO2 nanocomposite electrodes for high temperature harsh environment sensors. In Proceedings of the SPIE Microtechnologies, Grenoble, France, 24–26 April 2013. [Google Scholar] [CrossRef]
- Behanan, R.; Moulzolf, S.C.; Call, M.; Bernhardt, G.; Frankel, D.; Lad, R.J.; Cunha, M.P.d. Thin films and techniques for SAW sensor operation above 1000 °C. In Proceedings of the 2013 IEEE International Ultrasonics Symposium (IUS), Prague, Czech Republic, 21–25 July 2013. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, Y.; Zhan, Z.; Zhuo, F.; Ji, Z.; Zheng, Y.; Fu, Y.; Duan, H. Strategies for Giant Mass Sensitivity Using Super-High-Frequency Acoustic Waves. IEEE Sens. J. 2022, 22, 20336–20345. [Google Scholar] [CrossRef]
- Reindl, L.; Shrena, I.; Kenshil, S.; Peter, R. Wireless measurement of temperature using surface acoustic waves sensors. In Proceedings of the IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum, Tampa, FL, USA, 4–8 May 2003. [Google Scholar] [CrossRef]
- Binder, A.; Bruckner, G.; Schobernig, N.; Schmitt, D. Wireless Surface Acoustic Wave Pressure and Temperature Sensor with Unique Identification Based on LiNbO3. IEEE Sens. J. 2013, 13, 1801–1805. [Google Scholar] [CrossRef]
- Chang, H.C.; Hung, S.S.; Chen, Y.H.; Tsai, M.H. A Wireless Surface Acoustic Wave-based Tire Pressure and Temperature Sensing Module. In Proceedings of the 5th International Conference on Information Engineering for Mechanics and Material, Huhhot, China, 25–26 July 2015. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Mu, D.; Zhang, Z.; Zhang, J.; Sun, J.; Jin, H. Surface Acoustic Wave Sensors for Wireless Temperature Measurements above 1200 Degree Celsius. Sensors 2024, 24, 4945. https://doi.org/10.3390/s24154945
Zhang H, Mu D, Zhang Z, Zhang J, Sun J, Jin H. Surface Acoustic Wave Sensors for Wireless Temperature Measurements above 1200 Degree Celsius. Sensors. 2024; 24(15):4945. https://doi.org/10.3390/s24154945
Chicago/Turabian StyleZhang, Hong, Danyu Mu, Zichao Zhang, Jikai Zhang, Jiabao Sun, and Hao Jin. 2024. "Surface Acoustic Wave Sensors for Wireless Temperature Measurements above 1200 Degree Celsius" Sensors 24, no. 15: 4945. https://doi.org/10.3390/s24154945
APA StyleZhang, H., Mu, D., Zhang, Z., Zhang, J., Sun, J., & Jin, H. (2024). Surface Acoustic Wave Sensors for Wireless Temperature Measurements above 1200 Degree Celsius. Sensors, 24(15), 4945. https://doi.org/10.3390/s24154945