sensors-logo

Journal Browser

Journal Browser

Selected Papers from the International Conference on Next-Generation Electronics & Photonics (INGEP 2024)

A special issue of Sensors (ISSN 1424-8220). This special issue belongs to the section "Electronic Sensors".

Deadline for manuscript submissions: closed (25 October 2024) | Viewed by 9999

Special Issue Editors


E-Mail Website
Guest Editor
College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
Interests: optoelectronics; micro-spectrometers; wavelength tunable lasers; thermoelectricity; flexible electronics

E-Mail Website
Guest Editor
College of Information Science and Electronic Engineering, Zhejiang University, No. 38 Zheda Road, Hangzhou 310027, China
Interests: photonic integration; semiconductor lasers; microcavity photonics; quantum dots; photonic crystals; photonic quantum devices; heterogeneous integration
Special Issues, Collections and Topics in MDPI journals
College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310027, China
Interests: silicon-based micro/nanofabrication; electrokinetic-based separation and enrichment methods; biomicrofluidics; biosensors and lab-on-a-chip systems for biomedical applications
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
Interests: sensors; 2D materials and devices; bio-electronic devices and medical devices
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The International Conference on Next-Generation Electronics & Photonics (INGEP 2024) will be held in Hangzhou, China, on 11–14 April 2024. The INGEP 2024 will provide a platform for experts, scholars and researchers from all over the world to convene and share novel ideas on next-generation electronics and photonics.

The INGEP 2024 will feature plenary and invited talks by prominent scholars and scientists in advanced microelectronic and photonic devices and materials. The topics covered are listed below:

  • Advanced electronic devices, memory devices, electronic systems;
  • Low-dimension materials, devices and technologies;
  • Wide band gap semiconductor materials, devices and technologies;
  • Flexible and wearable electronics;
  • Optoelectronic devices and systems and advanced display technologies;
  • Nanophotonics;
  • Integrated quantum photonics;
  • Photovoltaic materials and technologies;
  • Advanced sensors, actuators, MEMS;
  • BioMEMS, biomedical devices and microfluidics;
  • Energy harvesting technologies;
  • Wireless sensing technologies.

Authors of selected high-quality papers that fit Sensors’ scope from the conference will be invited to submit extended versions of their original papers (50% extensions of contents of the conference paper). In addition to the INGEP 2024 papers, other independent submissions are also welcome. The subject of these contributions should be the same research topics as the ones in the conference.

Prof. Dr. Zongyin Yang
Prof. Dr. Chaoyuan Jin
Dr. Hao Jin
Dr. Xiaozhi Wang
Prof. Dr. Jikui Luo
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sensors is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • electronic sensors, devices and systems
  • flexible & wearable electronics
  • optoelectronic devices and systems
  • nanophotonics
  • sensors, actuators, MEMS
  • energy harvesting
  • wireless sensing

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

11 pages, 4034 KiB  
Article
Fresnel Diffraction Model for Laser Dazzling Spots of Complementary Metal Oxide Semiconductor Cameras
by Xinyu Wang, Zhongjie Xu, Hairong Zhong, Xiang’ai Cheng, Zhongyang Xing and Jiangbin Zhang
Sensors 2024, 24(17), 5781; https://doi.org/10.3390/s24175781 - 5 Sep 2024
Viewed by 713
Abstract
Laser dazzling on complementary metal oxide semiconductor (CMOS) image sensors is an effective method in optoelectronic countermeasures. However, previous research mainly focused on the laser dazzling under far fields, with limited studies on situations that the far-field conditions were not satisfied. In this [...] Read more.
Laser dazzling on complementary metal oxide semiconductor (CMOS) image sensors is an effective method in optoelectronic countermeasures. However, previous research mainly focused on the laser dazzling under far fields, with limited studies on situations that the far-field conditions were not satisfied. In this paper, we established a Fresnel diffraction model of laser dazzling on a CMOS by combining experiments and simulations. We calculated that the laser power density and the area of saturated pixels on the detector exhibit a linear relationship with a slope of 0.64 in a log-log plot. In the experiment, we found that the back side illumination (BSI-CMOS) matched the simulations, with an error margin of 3%, while the front side illumination (FSI-CMOS) slightly mismatched the simulations, with an error margin of 14%. We also found that the full-screen saturation threshold for the BSI-CMOS was 25% higher than the FSI-CMOS. Our work demonstrates the applicability of the Fresnel diffraction model for BSI-CMOS, which provides a valuable reference for studying laser dazzling. Full article
Show Figures

Figure 1

18 pages, 9705 KiB  
Article
Intelligent Gesture Recognition Based on Screen Reflectance Multi-Band Spectral Features
by Peiying Lin, Chenrui Li, Sijie Chen, Jiangtao Huangfu and Wei Yuan
Sensors 2024, 24(17), 5519; https://doi.org/10.3390/s24175519 - 26 Aug 2024
Viewed by 540
Abstract
Human–computer interaction (HCI) with screens through gestures is a pivotal method amidst the digitalization trend. In this work, a gesture recognition method is proposed that combines multi-band spectral features with spatial characteristics of screen-reflected light. Based on the method, a red-green-blue (RGB) three-channel [...] Read more.
Human–computer interaction (HCI) with screens through gestures is a pivotal method amidst the digitalization trend. In this work, a gesture recognition method is proposed that combines multi-band spectral features with spatial characteristics of screen-reflected light. Based on the method, a red-green-blue (RGB) three-channel spectral gesture recognition system has been developed, composed of a display screen integrated with narrowband spectral receivers as the hardware setup. During system operation, emitted light from the screen is reflected by gestures and received by the narrowband spectral receivers. These receivers at various locations are tasked with capturing multiple narrowband spectra and converting them into light-intensity series. The availability of multi-narrowband spectral data integrates multidimensional features from frequency and spatial domains, enhancing classification capabilities. Based on the RGB three-channel spectral features, this work formulates an RGB multi-channel convolutional neural network long short-term memory (CNN-LSTM) gesture recognition model. It achieves accuracies of 99.93% in darkness and 99.89% in illuminated conditions. This indicates the system’s capability for stable operation across different lighting conditions and accurate interaction. The intelligent gesture recognition method can be widely applied for interactive purposes on various screens such as computers and mobile phones, facilitating more convenient and precise HCI. Full article
Show Figures

Figure 1

18 pages, 18421 KiB  
Article
Surface Acoustic Wave Sensors for Wireless Temperature Measurements above 1200 Degree Celsius
by Hong Zhang, Danyu Mu, Zichao Zhang, Jikai Zhang, Jiabao Sun and Hao Jin
Sensors 2024, 24(15), 4945; https://doi.org/10.3390/s24154945 - 30 Jul 2024
Viewed by 969
Abstract
High-temperature wireless sensing is crucial for monitoring combustion chambers and turbine stators in aeroengines, where surface temperatures can reach up to 1200 °C. Surface Acoustic Wave (SAW) temperature sensors are an excellent choice for these measurements. However, at extreme temperatures, they face issues [...] Read more.
High-temperature wireless sensing is crucial for monitoring combustion chambers and turbine stators in aeroengines, where surface temperatures can reach up to 1200 °C. Surface Acoustic Wave (SAW) temperature sensors are an excellent choice for these measurements. However, at extreme temperatures, they face issues such as agglomeration and recrystallization of electrodes, leading to loss of conductivity and reduced quality factor, hindering effective wireless signal transmission. This study develops an LGS SAW sensor with a Pt-10%Rh/Zr/Pt-10%Rh/Zr/Pt-10%Rh/Zr multilayer composite electrode structure to address these challenges. We demonstrate that the sensor can achieve wireless temperature measurements from room temperature to 1200 °C with an accuracy of 1.59%. The composite electrodes excite a quasi-shear wave on the LGS substrate, maintaining a Q-factor of 3526 at room temperature, providing an initial assurance for the strength of the wireless interrogation echo signal. The sensor operates stably for 2.18 h at 1200 °C before adhesion loss between the composite electrode and the substrate causes a sudden increase in resonant frequency. This study highlights the durability of the proposed electrode materials and structure at extreme temperatures and suggests future research to improve adhesion and extend the sensor’s lifespan, thereby enhancing the reliability and effectiveness of high-temperature wireless sensing in aerospace applications. Full article
Show Figures

Figure 1

12 pages, 2871 KiB  
Article
Thin-Film Transistor Digital Microfluidics Circuit Design with Capacitance-Based Droplet Sensing
by Shengzhe Jiang, Chang Li, Jiping Du, Dongping Wang, Hanbin Ma, Jun Yu and Arokia Nathan
Sensors 2024, 24(15), 4789; https://doi.org/10.3390/s24154789 - 24 Jul 2024
Viewed by 842
Abstract
With the continuous expansion of pixel arrays in digital microfluidics (DMF) chips, precise droplet control has emerged as a critical issue requiring detailed consideration. This paper proposes a novel capacitance-based droplet sensing system for thin-film transistor DMF. The proposed circuit features a distinctive [...] Read more.
With the continuous expansion of pixel arrays in digital microfluidics (DMF) chips, precise droplet control has emerged as a critical issue requiring detailed consideration. This paper proposes a novel capacitance-based droplet sensing system for thin-film transistor DMF. The proposed circuit features a distinctive inner and outer dual-pixel electrode structure, integrating droplet driving and sensing functionalities. Discharge occurs exclusively at the inner electrode during droplet sensing, effectively addressing droplet perturbation in existing sensing circuits. The circuit employs a novel fan-shaped structure of thin-film transistors. Simulation results show that it can provide a 48 V pixel voltage and demonstrate a sensing voltage difference of over 10 V between deionized water and silicone oil, illustrating its proficiency in droplet driving and accurate sensing. The stability of threshold voltage drift and temperature was also verified for the circuit. The design is tailored for integration into active matrix electrowetting-on-dielectric (AM-EWOD) chips, offering a novel approach to achieve precise closed-loop control of droplets. Full article
Show Figures

Figure 1

11 pages, 2841 KiB  
Article
Microscale Lateral Perovskite Light Emitting Diode Realized by Self-Doping Phenomenon
by Wenzhe Gao, He Huang, Chenming Wang, Yongzhe Zhang, Zilong Zheng, Jinpeng Li and Xiaoqing Chen
Sensors 2024, 24(14), 4454; https://doi.org/10.3390/s24144454 - 10 Jul 2024
Viewed by 803
Abstract
High-definition near-eye display technology has extremely close sight distance, placing a higher demand on the size, performance, and array of light-emitting pixel devices. Based on the excellent photoelectric performance of metal halide perovskite materials, perovskite light-emitting diodes (PeLEDs) have high photoelectric conversion efficiency, [...] Read more.
High-definition near-eye display technology has extremely close sight distance, placing a higher demand on the size, performance, and array of light-emitting pixel devices. Based on the excellent photoelectric performance of metal halide perovskite materials, perovskite light-emitting diodes (PeLEDs) have high photoelectric conversion efficiency, adjustable emission spectra, and excellent charge transfer characteristics, demonstrating great prospects as next-generation light sources. Despite their potential, the solubility of perovskite in photoresist presents a hurdle for conventional micro/nano processing techniques, resulting in device sizes typically exceeding 50 μm. This limitation impedes the further downsizing of perovskite-based components. Herein, we propose a plane-structured PeLED device that can achieve microscale light-emitting diodes with a single pixel device size < 2 μm and a luminescence lifetime of approximately 3 s. This is accomplished by fabricating a patterned substrate and regulating ion distribution in the perovskite through self-doping effects to form a PN junction. This breakthrough overcomes the technical challenge of perovskite–photoresist incompatibility, which has hindered the development of perovskite materials in micro/nano optoelectronic devices. The strides made in this study open up promising avenues for the advancement of PeLEDs within the realm of micro/nano optoelectronic devices. Full article
Show Figures

Figure 1

10 pages, 4717 KiB  
Article
A Programmable Ambient Light Sensor with Dark Current Compensation and Wide Dynamic Range
by Nianbo Shi, Jian Yang, Zhixiang Cao and Xiangliang Jin
Sensors 2024, 24(11), 3396; https://doi.org/10.3390/s24113396 - 24 May 2024
Cited by 1 | Viewed by 974
Abstract
Ambient light sensors are becoming increasingly popular due to their effectiveness in extending the battery life of portable electronic devices. However, conventional ambient light sensors are large in area and small in dynamic range, and they do not take into account the effects [...] Read more.
Ambient light sensors are becoming increasingly popular due to their effectiveness in extending the battery life of portable electronic devices. However, conventional ambient light sensors are large in area and small in dynamic range, and they do not take into account the effects caused due to a dark current. To address the above problems, a programmable ambient light sensor with dark current compensation and a wide dynamic range is proposed in this paper. The proposed ambient light sensor exhibits a low current power consumption of only 7.7 µA in dark environments, and it operates across a wide voltage range (2–5 V) and temperature range (−40–80 °C). It senses ambient light and provides an output current proportional to the ambient light intensity, with built-in dark current compensation to effectively suppress the effects of a dark current. It provides a wide dynamic range over the entire operating temperature range with three selectable output-current gain modes. The proposed ambient light sensor was designed and fabricated using a 0.18 µm standard CMOS process, and the effective area of the chip is 663 µm × 652 µm. The effectiveness of the circuit was verified through testing, making it highly suitable for portable electronic products and fluorescent fiber-optic temperature sensors. Full article
Show Figures

Figure 1

11 pages, 3826 KiB  
Article
Design and Fabrication of a Film Bulk Acoustic Wave Filter for 3.0 GHz–3.2 GHz S-Band
by Chao Gao, Yupeng Zheng, Haiyang Li, Yuqi Ren, Xiyu Gu, Xiaoming Huang, Yaxin Wang, Yuanhang Qu, Yan Liu, Yao Cai and Chengliang Sun
Sensors 2024, 24(9), 2939; https://doi.org/10.3390/s24092939 - 5 May 2024
Cited by 1 | Viewed by 1589
Abstract
Film bulk acoustic-wave resonators (FBARs) are widely utilized in the field of radio frequency (RF) filters due to their excellent performance, such as high operation frequency and high quality. In this paper, we present the design, fabrication, and characterization of an FBAR filter [...] Read more.
Film bulk acoustic-wave resonators (FBARs) are widely utilized in the field of radio frequency (RF) filters due to their excellent performance, such as high operation frequency and high quality. In this paper, we present the design, fabrication, and characterization of an FBAR filter for the 3.0 GHz–3.2 GHz S-band. Using a scandium-doped aluminum nitride (Sc0.2Al0.8N) film, the filter is designed through a combined acoustic–electromagnetic simulation method, and the FBAR and filter are fabricated using an eight-step lithographic process. The measured FBAR presents an effective electromechanical coupling coefficient (keff2) value up to 13.3%, and the measured filter demonstrates a −3 dB bandwidth of 115 MHz (from 3.013 GHz to 3.128 GHz), a low insertion loss of −2.4 dB, and good out-of-band rejection of −30 dB. The measured 1 dB compression point of the fabricated filter is 30.5 dBm, and the first series resonator burns out first as the input power increases. This work paves the way for research on high-power RF filters in mobile communication. Full article
Show Figures

Figure 1

Back to TopTop