Design and Fabrication of a Film Bulk Acoustic Wave Filter for 3.0 GHz–3.2 GHz S-Band
Abstract
:1. Introduction
2. Design and Fabrication
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- AlJoumayly, M.; Rothemund, R.; Schaefer, M.; Heeren, W. 5G BAW technology: Challenges and solutions. In Proceedings of the 2022 IEEE 22nd Annual Wireless and Microwave Technology Conference (WAMICON), Clearwater, FL, USA, 27–28 April 2022; pp. 1–3. [Google Scholar]
- Aigner, R.; Fattinger, G.; Schaefer, M.; Karnati, K.; Rothemund, R.; Dumont, F. BAW filters for 5G bands. In Proceedings of the 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 1–5 December 2018; pp. 1–4. [Google Scholar]
- Niu, Y.; Li, Y.; Jin, D.; Su, L.; Vasilakos, A.V. A survey of millimeter wave communications (mmWave) for 5G: Opportunities and challenges. Wirel. Netw. 2015, 21, 2657–2676. [Google Scholar] [CrossRef]
- Pham, Q.-V.; Fang, F.; Ha, V.N.; Piran, M.J.; Le, M.; Le, L.B.; Hwang, W.-J.; Ding, Z. A survey of multi-access edge computing in 5G and beyond: Fundamentals, technology integration, and state-of-the-art. IEEE Access 2020, 8, 116974–117017. [Google Scholar] [CrossRef]
- Ruby, R. Review and comparison of bulk acoustic wave FBAR, SMR technology. In Proceedings of the 2007 IEEE Ultrasonics Symposium Proceedings, New York, NY, USA, 28–31 October 2007; pp. 1029–1040. [Google Scholar]
- Chauhan, V.; Huck, C.; Frank, A.; Akstaller, W.; Weigel, R.; Hagelauer, A. Enhancing RF bulk acoustic wave devices: Multiphysical modeling and performance. IEEE Microw. Mag. 2019, 20, 56–70. [Google Scholar] [CrossRef]
- Liu, Y.; Cai, Y.; Zhang, Y.; Tovstopyat, A.; Sun, C. Materials, design, and characteristics of bulk acoustic wave resonator: A review. Micromachines 2020, 11, 630. [Google Scholar] [CrossRef] [PubMed]
- Trolier-McKinstry, S.; Muralt, P. Thin film piezoelectrics for MEMS. J. Electroceramics 2004, 12, 7–17. [Google Scholar] [CrossRef]
- Iborra, E.; Olivares, J.; Clement, M.; Capilla, J.; Felmetsger, V.; Mikhov, M. Piezoelectric and electroacoustic properties of V-doped and Ta-doped AlN thin films. In Proceedings of the 2013 Joint European Frequency and Time Forum & International Frequency Control Symposium (EFTF/IFC), Prague, Czech Republic, 21–25 July 2013; pp. 262–265. [Google Scholar]
- Iborra, E.; Capilla, J.; Olivares, J.; Clement, M.; Felmetsger, V. Piezoelectric and electroacoustic properties of Ti-doped AlN thin films as a function of Ti content. In Proceedings of the 2012 IEEE International Ultrasonics Symposium, Dresden, Germany, 7–10 October 2012; pp. 2734–2737. [Google Scholar]
- Li, H.; Bao, H.Q.; Song, B.; Wang, W.J.; Chen, X.L.; He, L.J.; Yuan, W.X. Ferromagnetic properties of Mn-doped AlN. Phys. B Condens. Matter 2008, 403, 4096–4099. [Google Scholar] [CrossRef]
- Yao, G.; Fan, G.; Xing, H.; Zheng, S.; Ma, J.; Yong, Z.; He, L. Electronic structure and magnetism of V-doped AlN. J. Magn. Magn. Mater. 2013, 331, 117–121. [Google Scholar] [CrossRef]
- Akiyama, M.; Kamohara, T.; Kano, K.; Teshigahara, A.; Takeuchi, Y.; Kawahara, N. Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering. Adv. Mater. 2009, 21, 593–596. [Google Scholar] [CrossRef] [PubMed]
- Caro, M.A.; Zhang, S.; Riekkinen, T.; Ylilammi, M.; Moram, M.A.; Lopez-Acevedo, O.; Molarius, J.; Laurila, T. Piezoelectric coefficients and spontaneous polarization of ScAlN. J. Phys. Condens. Matter 2015, 27, 245901. [Google Scholar] [CrossRef]
- Umeda, K.; Kawai, H.; Honda, A.; Akiyama, M.; Kato, T.; Fukura, T. Piezoelectric properties of ScAlN thin films for piezo-MEMS devices. In Proceedings of the 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), Taipei, Taiwan, 20–24 January 2013; pp. 733–736. [Google Scholar]
- Sano, K.-H.; Karasawa, R.; Yanagitani, T. High electromechanical coefficient kt2=19% thick ScAlN piezoelectric films for ultrasonic transducer in low frequency of 80 MHz. In Proceedings of the IEEE International Ultrasonics Symposium (IUS), Washington, DC, USA, 6–9 September 2017. [Google Scholar]
- Moreira, M.; Bjurström, J.; Katardjev, I.; Yantchev, V. Aluminum scandium nitride thin-film bulk acoustic resonators for wide band applications. Vacuum 2011, 86, 23–26. [Google Scholar] [CrossRef]
- Akiyama, M.; Kano, K.; Teshigahara, A. Influence of growth temperature and scandium concentration on piezoelectric response of scandium aluminum nitride alloy thin films. Appl. Phys. Lett. 2009, 95, 162107. [Google Scholar] [CrossRef]
- Ruppel, C.C. Acoustic wave filter technology–A review. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2017, 64, 1390–1400. [Google Scholar] [CrossRef] [PubMed]
- Aigner, R. SAW and BAW technologies for RF filter applications: A review of the relative strengths and weaknesses. In Proceedings of the International Ultrasonics Symposium, Beijing, China, 2–5 November 2008; pp. 582–589. [Google Scholar]
- Matloub, R.; Artieda, A.; Sandu, C.; Milyutin, E.; Muralt, P. Electromechanical properties of Al0. 9Sc0. 1N thin films evaluated at 2.5 GHz film bulk acoustic resonators. Appl. Phys. Lett. 2011, 99, 092903. [Google Scholar] [CrossRef]
- Park, M.; Wang, J.; Dargis, R.; Clark, A.; Ansari, A. Super high-frequency scandium aluminum nitride crystalline film bulk acoustic resonators. In Proceedings of the 2019 IEEE International Ultrasonics Symposium (IUS), Glasgow, UK, 6–9 October 2019; pp. 1689–1692. [Google Scholar]
- Wang, J.; Park, M.; Mertin, S.; Pensala, T.; Ansari, A. A Film Bulk Acoustic Resonator Based on Ferroelectric Aluminum Scandium Nitride Films. J. Microelectromechanical Syst. 2020, 29, 741–747. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, Y.; Ansari, A. Ferroelectric aluminum scandium nitride thin film bulk acoustic resonators with polarization-dependent operating states. Phys. Status Solidi –Rapid Res. Lett. 2021, 15, 2100034. [Google Scholar] [CrossRef]
- Nam, S.; Peng, W.; Wang, P.; Wang, D.; Mi, Z.; Mortazawi, A. An mm-wave trilayer AlN/ScAlN/AlN higher order mode FBAR. IEEE Microw. Wirel. Technol. Lett. 2023, 33, 803–806. [Google Scholar] [CrossRef]
- Zou, Y.; Cai, Y.; Gao, C.; Luo, T.; Liu, Y.; Xu, Q.; Wang, Y.; Nian, L.; Liu, W.; Soon, J.B.W.; et al. Design, fabrication, and characterization of aluminum scandium nitride-based thin film bulk acoustic wave filter. J. Microelectromechanical Syst. 2023, 32, 263–270. [Google Scholar] [CrossRef]
- Dou, W.; Zhou, C.; Qin, R.; Yang, Y.; Guo, H.; Mu, Z.; Yu, W. Super-High-Frequency Bulk Acoustic Resonators Based on Aluminum Scandium Nitride for Wideband Applications. Nanomaterials 2023, 13, 2737. [Google Scholar] [CrossRef] [PubMed]
- Ismail, N.; Gunawan, T.S.; Praludi, T.; Hamidi, E. Design of microstrip hairpin bandpass filter for 2.9 GHz–3.1 GHz s-band radar with defected ground structure. Malays. J. Fundam. Appl. Sci. 2018, 14, 448–455. [Google Scholar] [CrossRef]
- Jamneala, T.; Bradley, P.; Koelle, U.B.; Chien, A. Modified Mason model for bulk acoustic wave resonators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2008, 55, 2025–2029. [Google Scholar] [CrossRef]
- Bi, F.Z.; Barber, B.P. Bulk acoustic wave RF technology. IEEE Microw. Mag. 2008, 9, 65–80. [Google Scholar] [CrossRef]
- Zou, Y.; Gao, C.; Zhou, J.; Liu, Y.; Xu, Q.; Qu, Y.; Liu, W.; Soon, J.B.W.; Cai, Y.; Sun, C. Aluminum scandium nitride thin-film bulk acoustic resonators for 5G wideband applications. Microsyst. Nanoeng. 2022, 8, 124. [Google Scholar] [CrossRef]
- Tag, A.; Chauhan, V.; Huck, C.; Bader, B.; Karolewski, D.; Pitschi, F.M.; Weigel, R.; Hagelauer, A. A method for accurate modeling of BAW filters at high power levels. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2016, 63, 2207–2214. [Google Scholar] [CrossRef]
- Tag, A.; Chauhan, V.; Weigel, R.; Hagelauer, A.; Bader, B.; Huck, C.; Pitschi, M.; Karolewski, D. Multiphysics modeling of BAW filters. In Proceedings of the 2015 IEEE International Ultrasonics Symposium (IUS), Taipei, Taiwan, 21–24 October 2015; pp. 1–4. [Google Scholar]
- Schönweger, G.; Petraru, A.; Islam, M.R.; Wolff, N.; Haas, B.; Hammud, A.; Koch, C.; Kienle, L.; Kohlstedt, H.; Fichtner, S. From fully strained to relaxed: Epitaxial ferroelectric Al1−xScxN for III-N technology. Adv. Funct. Mater. 2022, 32, 2109632. [Google Scholar] [CrossRef]
- Moram, M.; Zhang, S. ScGaN and ScAlN: Emerging nitride materials. J. Mater. Chem. A 2014, 2, 6042–6050. [Google Scholar] [CrossRef]
- Zhang, S.; Holec, D.; Fu, W.Y.; Humphreys, C.J.; Moram, M.A. Tunable optoelectronic and ferroelectric properties in Sc-based III-nitrides. J. Appl. Phys. 2013, 114. [Google Scholar] [CrossRef]
- Satoh, Y.; Ikata, O. Ladder type SAW filter and its application to high power SAW devices. Int. J. High Speed Electron. Syst. 2000, 10, 825–865. [Google Scholar] [CrossRef]
- Zhang, Z.; Yao, L.; Wei, P.; Zhang, D.; Hao, Z. A high performance C-band FBAR filter. In Proceedings of the Microwave Conference, Nuremberg, Germany, 6–10 October 2013. [Google Scholar]
- Nor, N.M.; Khalid, N.; Osman, R.A.M.; Sauli, Z. Estimation of Material Damping Coefficients of AlN for Film Bulk Acoustic Wave Resonator. In Proceedings of the Materials Science Forum, Shenzhen, China, 25–26 September 2015; pp. 209–214. [Google Scholar]
- Kumar, Y.; Rangra, K.; Agarwal, R. Design and simulation of FBAR for quality factor enhancement. Mapan 2017, 32, 113–119. [Google Scholar] [CrossRef]
- Nor, N.I.M.; Shah, K.; Singh, J.; Khalid, N.; Sauli, Z. Design and analysis of film bulk acoustic wave resonator in Ku-band frequency for wireless communication. In Proceedings of the Active and Passive Smart Structures and Integrated Systems 2012, San Diego, CA, USA, 12–15 March 2012; pp. 555–563. [Google Scholar]
- Yang, Q.; Pang, W.; Zhang, D.; Zhang, H. A Modified Lattice Configuration Design for Compact Wideband Bulk Acoustic Wave Filter Applications. Micromachines 2016, 7, 133. [Google Scholar] [CrossRef]
- Campanella, H.; Narducci, M.; Wang, N.; Soon, J.B.W. RF-designed high-power lamb-wave aluminum–nitride resonators. IEEE Trans. Microw. Theory Tech. 2014, 63, 331–339. [Google Scholar] [CrossRef]
Resonator | AlN Seed Layer | Bottom Mo | Sc0.2Al0.8N | Top Mo | Mo Mass Loading |
---|---|---|---|---|---|
Series | 25 nm | 139 nm | 780 nm | 135 nm | 0 |
Parallel | 25 nm | 139 nm | 780 nm | 135 nm | 43 nm |
Resonator | fs (GHz) | fp (GHz) | (%) | Qs | Qp |
---|---|---|---|---|---|
Series | 3.0936 | 3.2760 | 13.0 | 295 | 209 |
Parallel | 2.9586 | 3.1372 | 13.3 | 267 | 217 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, C.; Zheng, Y.; Li, H.; Ren, Y.; Gu, X.; Huang, X.; Wang, Y.; Qu, Y.; Liu, Y.; Cai, Y.; et al. Design and Fabrication of a Film Bulk Acoustic Wave Filter for 3.0 GHz–3.2 GHz S-Band. Sensors 2024, 24, 2939. https://doi.org/10.3390/s24092939
Gao C, Zheng Y, Li H, Ren Y, Gu X, Huang X, Wang Y, Qu Y, Liu Y, Cai Y, et al. Design and Fabrication of a Film Bulk Acoustic Wave Filter for 3.0 GHz–3.2 GHz S-Band. Sensors. 2024; 24(9):2939. https://doi.org/10.3390/s24092939
Chicago/Turabian StyleGao, Chao, Yupeng Zheng, Haiyang Li, Yuqi Ren, Xiyu Gu, Xiaoming Huang, Yaxin Wang, Yuanhang Qu, Yan Liu, Yao Cai, and et al. 2024. "Design and Fabrication of a Film Bulk Acoustic Wave Filter for 3.0 GHz–3.2 GHz S-Band" Sensors 24, no. 9: 2939. https://doi.org/10.3390/s24092939
APA StyleGao, C., Zheng, Y., Li, H., Ren, Y., Gu, X., Huang, X., Wang, Y., Qu, Y., Liu, Y., Cai, Y., & Sun, C. (2024). Design and Fabrication of a Film Bulk Acoustic Wave Filter for 3.0 GHz–3.2 GHz S-Band. Sensors, 24(9), 2939. https://doi.org/10.3390/s24092939