Can a Novel Light Weight Minimal Support Lifting Exoskeleton Modify Lifting Movement in People without Low Back Pain?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Exoskeleton Tested
2.3. Procedure
2.4. Data Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GBD. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1545–1602. [Google Scholar] [CrossRef] [PubMed]
- Keeney, B.J.; Fulton-Kehoe, D.; Turner, J.A.; Wickizer, T.M.; Chan, K.C.; Franklin, G.M. Early predictors of lumbar spine surgery after occupational back injury: Results from a prospective study of workers in Washington State. Spine 2013, 38, 953–964. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, D.; Mathiassen, S.E. Motor variability in occupational health and performance. Clin. Biomech. 2012, 27, 979–993. [Google Scholar] [CrossRef] [PubMed]
- Solomonow, M.; Zhou, B.H.; Lu, Y.; King, K.B. Acute repetitive lumbar syndrome: A multi-component insight into the disorder. J. Bodyw. Mov. Ther. 2012, 16, 134–147. [Google Scholar] [CrossRef] [PubMed]
- Chorba, R.S.; Chorba, D.J.; Bouillon, L.E.; Overmyer, C.A.; Landis, J.A. Use of a functional movement screening tool to determine injury risk in female collegiate athletes. N. Am. J. Sports Phys. Ther. NAJSPT 2010, 5, 47. [Google Scholar] [PubMed]
- Vogel, J.; Wilke, J.; Krause, F.; Vogt, L.; Niederer, D.; Banzer, W. Functional movement analysis in patients with chronic nonspecific low back pain: A reliability and validity study. BMC Musculoskelet. Disord. 2019, 20, 395. [Google Scholar] [CrossRef] [PubMed]
- Nolan, D.; O’Sullivan, K.; Stephenson, J.; O’Sullivan, P.; Lucock, M. What do physiotherapists and manual handling advisors consider the safest lifting posture, and do back beliefs influence their choice? Musculoskelet. Sci. Pract. 2018, 33, 35–40. [Google Scholar] [CrossRef]
- Hides, J.A.; Miokovic, T.; Belavý, D.L.; Stanton, W.R.; Richardson, C.A. Ultrasound imaging assessment of abdominal muscle function during drawing-in of the abdominal wall: An intrarater reliability study. J. Orthop. Sports Phys. Ther. 2007, 37, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Koes, B.W.; Van Tulder, M.; Lin, C.-W.C.; Macedo, L.G.; McAuley, J.; Maher, C. An updated overview of clinical guidelines for the management of non-specific low back pain in primary care. Eur. Spine J. 2010, 19, 2075–2094. [Google Scholar] [CrossRef]
- Jonsdottir, S.; Ahmed, H.; Tómasson, K.; Carter, B. Factors associated with chronic and acute back pain in Wales, a cross-sectional study. BMC Musculoskelet. Disord. 2019, 20, 215. [Google Scholar] [CrossRef]
- Waddell, G.; Somerville, D.; Henderson, I.; Newton, M. Objective clinical evaluation of physical impairment in chronic low back pain. Spine 1992, 17, 617–628. [Google Scholar] [CrossRef] [PubMed]
- McGregor, A.H.; Hughes, S.P. The effect of test speed on the motion characteristics of the lumbar spine during an AP flexion-extension test. J. Back. Musculoskelet. Rehabil. 2000, 14, 99–104. [Google Scholar] [CrossRef]
- Porter, J.L.; Wilkinson, A. Lumbar-hip flexion motion: A comparative study between asymptomatic and chronic low back pain in 18-to 36-year-old men. Spine 1997, 22, 1508–1513. [Google Scholar] [CrossRef] [PubMed]
- Esola, M.A.; McClure, P.W.; Fitzgerald, G.K.; Siegler, S. Analysis of lumbar spine and hip motion during forward bending in subjects with and without a history of low back pain. Spine 1996, 21, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Delitto, A.; George, S.Z.; Van Dillen, L.; Whitman, J.M.; Sowa, G.; Shekelle, P.; Denninger, T.R.; Godges, J.J. Low back pain. J. Orthop. Sports Phys. Ther. 2012, 42, A1–A57. [Google Scholar] [CrossRef]
- Brewer, W.; Swanson, B.T.; Roddey, T.S.; Adewale, H.; Ashmore, C.; Frerich, J.; Perrin, C.; Ortiz, A. A pilot study to determine the effect of one physical therapy session on physical activity levels for individuals with chronic low back pain. BMC Res. Notes 2017, 10, 691. [Google Scholar] [CrossRef]
- Pranata, A.; Perraton, L.; El-Ansary, D.; Clark, R.; Mentiplay, B.; Fortin, K.; Long, B.; Brandham, R.; Bryant, A. Trunk and lower limb coordination during lifting in people with and without chronic low back pain. J. Biomech. 2018, 71, 257–263. [Google Scholar] [CrossRef]
- van Dieën, J.H.; Hoozemans, M.J.; Toussaint, H.M. Stoop or squat: A review of biomechanical studies on lifting technique. Clin. Biomech. 1999, 14, 685–696. [Google Scholar] [CrossRef]
- Zawadka, M.; Skublewska-Paszkowska, M.; Gawda, P.; Lukasik, E.; Smolka, J.; Jablonski, M. What factors can affect lumbopelvic flexion-extension motion in the sagittal plane?: A literature review. Hum. Mov. Sci. 2018, 58, 205–218. [Google Scholar] [CrossRef]
- Nolan, D.; O’Sullivan, K.; Newton, C.; Singh, G.; Smith, B.E. Are there differences in lifting technique between those with and without low back pain? A systematic review. Scand. J. Pain. 2020, 20, 215–227. [Google Scholar] [CrossRef]
- Coenen, P.; Gouttebarge, V.; van der Burght, A.S.; van Dieën, J.H.; Frings-Dresen, M.H.; van der Beek, A.J.; Burdorf, A. The effect of lifting during work on low back pain: A health impact assessment based on a meta-analysis. Occup. Environ. Med. 2014, 71, 871–877. [Google Scholar] [CrossRef] [PubMed]
- Kingma, I.; Faber, G.S.; Bakker, A.J.; Van Dieen, J.H. Can low back loading during lifting be reduced by placing one leg beside the object to be lifted? Phys. Ther. 2006, 86, 1091–1105. [Google Scholar] [CrossRef] [PubMed]
- Shirazi-Adl, A.; El-Rich, M.; Pop, D.; Parnianpour, M. Spinal muscle forces, internal loads and stability in standing under various postures and loads—Application of kinematics-based algorithm. Eur. Spine J. 2005, 14, 381–392. [Google Scholar] [CrossRef] [PubMed]
- Potvin, J.; McGill, S.; Norman, R. Trunk muscle and lumbar ligament contributions to dynamic lifts with varying degrees of trunk flexion. Spine 1991, 16, 1099–1107. [Google Scholar] [CrossRef] [PubMed]
- Huysamen, K.; de Looze, M.; Bosch, T.; Ortiz, J.; Toxiri, S.; O‘Sullivan, L.W. Assessment of an active industrial exoskeleton to aid dynamic lifting and lowering manual handling tasks. Appl. Ergon. 2018, 68, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Abdoli-Eramaki, M.; Stevenson, J.M.; Reid, S.A.; Bryant, T.J. Mathematical and empirical proof of principle for an on-body personal lift augmentation device (PLAD). J. Biomech. 2007, 40, 1694–1700. [Google Scholar] [CrossRef]
- Koopman, A.S.; Toxiri, S.; Power, V.; Kingma, I.; van Dieën, J.H.; Ortiz, J.; de Looze, M.P. The effect of control strategies for an active back-support exoskeleton on spine loading and kinematics during lifting. J. Biomech. 2019, 91, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Cabral, L.A.; Lima, L.C.R.; Cabido, C.E.T.; Fermino, R.C.; Oliveira, S.F.M.; Medeiros, A.I.A.; Barbosa, L.F.; Souza, T.M.F.d.; Banja, T.; Assumpção, C.d.O. Muscle Activation during the Squat Performed in Different Ranges of Motion by Women. Muscles 2023, 2, 12–22. [Google Scholar] [CrossRef]
- Padwal, J.; Berry, D.B.; Hubbard, J.C.; Zlomislic, V.; Allen, R.T.; Garfin, S.R.; Ward, S.R.; Shahidi, B. Regional differences between superficial and deep lumbar multifidus in patients with chronic lumbar spine pathology. BMC Musculoskelet. Disord. 2020, 21, 764. [Google Scholar] [CrossRef]
- Bassani, T.; Stucovitz, E.; Qian, Z.; Briguglio, M.; Galbusera, F. Validation of the AnyBody full body musculoskeletal model in computing lumbar spine loads at L4L5 level. J. Biomech. 2017, 58, 89–96. [Google Scholar] [CrossRef]
- Fotoohabadi, M.R.; Tully, E.A.; Galea, M.P. Kinematics of rising from a chair: Image-based analysis of the sagittal hip-spine movement pattern in elderly people who are healthy. Phys. Ther. 2010, 90, 561–571. [Google Scholar] [CrossRef]
- Choi, B.-r.; Kang, S.-y. Intra-and inter-examiner reliability of goniometer and inclinometer use in Craig’s test. J. Phys. Ther. Sci. 2015, 27, 1141–1144. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Reneman, M.; Dijkstra, P.; Westmaas, M.; Göeken, L. Test-retest reliability of lifting and carrying in a 2-day functional capacity evaluation. J. Occup. Rehabil. 2002, 12, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Simon, A.A.; Alemi, M.M.; Asbeck, A.T. Kinematic effects of a passive lift assistive exoskeleton. J. Biomech. 2021, 120, 110317. [Google Scholar] [CrossRef] [PubMed]
- Luger, T.; Baer, M.; Seibt, R.; Rimmele, P.; Rieger, M.A.; Steinhilber, B. A passive back exoskeleton supporting symmetric and asymmetric lifting in stoop and squat posture reduces trunk and hip extensor muscle activity and adjusts body posture—A laboratory study. Appl. Ergon. 2021, 97, 103530. [Google Scholar] [CrossRef]
- Baltrusch, S.; Van Dieën, J.; Koopman, A.S.; Näf, M.; Rodriguez-Guerrero, C.; Babič, J.; Houdijk, H. SPEXOR passive spinal exoskeleton decreases metabolic cost during symmetric repetitive lifting. Eur. J. Appl. Physiol. 2020, 120, 401–412. [Google Scholar] [CrossRef] [PubMed]
- Koopman, A.S.; Kingma, I.; de Looze, M.P.; van Dieën, J.H. Effects of a passive back exoskeleton on the mechanical loading of the low-back during symmetric lifting. J. Biomech. 2020, 102, 109486. [Google Scholar] [CrossRef]
- Asgari, M.; Sanjari, M.A.; Mokhtarinia, H.R.; Sedeh, S.M.; Khalaf, K.; Parnianpour, M. The effects of movement speed on kinematic variability and dynamic stability of the trunk in healthy individuals and low back pain patients. Clin. Biomech. 2015, 30, 682–688. [Google Scholar] [CrossRef]
- Stergiou, N.; Decker, L.M. Human movement variability, nonlinear dynamics, and pathology: Is there a connection? Hum. Mov. Sci. 2011, 30, 869–888. [Google Scholar] [CrossRef]
- Sakai, Y.; Watanabe, T.; Wakao, N.; Matsui, H.; Osada, N.; Sugiura, T.; Morita, Y.; Kawai, K.; Ito, T.; Yamazaki, K. Proprioception and geriatric low back pain. Spine Surg. Relat. Res. 2022, 6, 422–432. [Google Scholar] [CrossRef] [PubMed]
- Brinkemper, A.; von Glinski, A.; Schildhauer, T.A. Influence of an on-body lifting aid (HAL® for Care Support) on kinematics during repetitive lifting in healthy men. J. Clin. Neurosci. 2021, 93, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Goršič, M.; Song, Y.; Dai, B.; Novak, D. Evaluation of the HeroWear Apex back-assist exosuit during multiple brief tasks. J. Biomech. 2021, 126, 110620. [Google Scholar] [CrossRef]
- Schipplein, O.; Trafimow, J.; Andersson, G.; Andriacchi, T. Relationship between moments at the L5/S1 level, hip and knee joint when lifting. J. Biomech. 1990, 23, 907–912. [Google Scholar] [CrossRef] [PubMed]
- Ulrey, B.L.; Fathallah, F.A. Effect of a personal weight transfer device on muscle activities and joint flexions in the stooped posture. J. Electromyogr. Kinesiol. 2013, 23, 195–205. [Google Scholar] [CrossRef]
- Goršič, M.; Regmi, Y.; Johnson, A.P.; Dai, B.; Novak, D. A pilot study of varying thoracic and abdominal compression in a reconfigurable trunk exoskeleton during different activities. IEEE Trans. Biomed. Eng. 2019, 67, 1585–1594. [Google Scholar] [CrossRef] [PubMed]
- Koopman, A.S. Biomechanical Evaluation of Exoskeletons for the Prevention of Low-Back Pain. Ph.D. Thesis, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands, 2020. [Google Scholar]
- Bosch, T.; van Eck, J.; Knitel, K.; de Looze, M. The effects of a passive exoskeleton on muscle activity, discomfort and endurance time in forward bending work. Appl. Ergon. 2016, 54, 212–217. [Google Scholar] [CrossRef]
- von Glinski, A.; Yilmaz, E.; Mrotzek, S.; Marek, E.; Jettkant, B.; Brinkemper, A.; Fisahn, C.; Schildhauer, T.A.; Geßmann, J. Effectiveness of an on-body lifting aid (HAL® for care support) to reduce lower back muscle activity during repetitive lifting tasks. J. Clin. Neurosci. 2019, 63, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Gracovetsky, S.; Newman, N.; Pawlowsky, M.; Lanzo, V.; Davey, B.; Robinson, L. A database for estimating normal spinal motion derived from noninvasive measurements. Spine 1995, 20, 1036–1046. [Google Scholar] [CrossRef] [PubMed]
- Hodges, P.W.; Smeets, R.J. Interaction between pain, movement, and physical activity: Short-term benefits, long-term consequences, and targets for treatment. Clin. J. Pain. 2015, 31, 97–107. [Google Scholar] [CrossRef]
Variables (Unit) | People without LBP (n = 14) Mean ± SD |
---|---|
Age (years) | 24 ± 4.51 |
Gender (%Male) | 11 (79%) |
Height (m) | 1.70 ± 0.08 |
Mass (kg) | 67.56 ± 8.32 |
BMI (kg/m2) | 23.32 ± 2.62 |
Region | Without Exoskeleton (n = 14) Mean ± SD | With Exoskeleton (n = 14) Mean ± SD |
---|---|---|
Trunk (°) | 14.28 ± 5.84 | 14.95 ± 6.57 |
Hip (°) | 40.27 ± 10.04 | 30.47 ± 14.07 |
Knee (°) | 51.95 ± 6.48 | 47.91 ± 9.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burjawi, T.; Chai, R.; Arrowsmith, M.; Pranata, A. Can a Novel Light Weight Minimal Support Lifting Exoskeleton Modify Lifting Movement in People without Low Back Pain? Sensors 2024, 24, 5067. https://doi.org/10.3390/s24155067
Burjawi T, Chai R, Arrowsmith M, Pranata A. Can a Novel Light Weight Minimal Support Lifting Exoskeleton Modify Lifting Movement in People without Low Back Pain? Sensors. 2024; 24(15):5067. https://doi.org/10.3390/s24155067
Chicago/Turabian StyleBurjawi, Tamer, Rifai Chai, Matthew Arrowsmith, and Adrian Pranata. 2024. "Can a Novel Light Weight Minimal Support Lifting Exoskeleton Modify Lifting Movement in People without Low Back Pain?" Sensors 24, no. 15: 5067. https://doi.org/10.3390/s24155067
APA StyleBurjawi, T., Chai, R., Arrowsmith, M., & Pranata, A. (2024). Can a Novel Light Weight Minimal Support Lifting Exoskeleton Modify Lifting Movement in People without Low Back Pain? Sensors, 24(15), 5067. https://doi.org/10.3390/s24155067