Energy-Oriented Hybrid Cooperative Adaptive Cruise Control for Fuel Cell Electric Vehicle Platoons
Abstract
:1. Introduction
- An energy-oriented hybrid cooperative adaptive cruise control strategy is proposed for an FCEV platoon. This hybrid control architecture combines a novel eco-driving CACC with superior energy management, harmonizing the car-following performance and economy of the platoon.
- The eco-driving CACC strategy generates optimal reference velocity datasets by integrating the comprehensive control objectives during longitudinal following of the platoon, including spacing error, speed error, and economy error, thus realizing the co-optimization of the following error and the energy efficiency.
- By parsing the comprehensive reference information, the superior energy management based on ECMS realizes the rational control of multiple energy sources of individual vehicles, thus completely releasing the energy-saving potential of the vehicle platoon.
2. System Modeling
2.1. Vehicle Platoon Modeling
2.1.1. Spacing Policy
2.1.2. Longitudinal Dynamics Model
2.2. Powertrain Modeling
2.2.1. Fuel Cell Model
2.2.2. Battery Model
2.2.3. Motor Model
3. Energy-Oriented Hybrid CACC
3.1. Minimum Principle for eCACC and EMS
3.2. Eco-Driving CACC in Top-Level Centralized Controller
3.3. EMS Based on ECMS in Bottom-Level Distributed Controllers
4. Simulation and Discussion
- CACC: A vehicle platoon longitudinal control method considering spacing error and velocity error. In this study, the weighting coefficients and are set to 10 and 1, respectively.
- eCACC: A method of longitudinal control of a vehicle platoon comprehensively considering the spacing error, velocity error, and economy error, wherein the weighting coefficients , , and are set to 10, 1, and 4.23 × 10−6, respectively.
- RB: A rule-based EMS competently distributing the power of the fuel cell and the battery [51]. Twelve fuel cell system demand power levels are determined by dividing the battery SOC into four levels: high SOC, relatively high SOC, relatively low SOC, and low SOC, as well as dividing the vehicle demand power into three levels: high, medium, and low. Note that key performance parameters of the fuel cell, including the maximum power, the efficient power, and idle power are set to 50, 20, and 2 kW, respectively.
- ECMS: A power distribution strategy for the fuel cell and the battery based on equivalent consumption minimization. Specifically, the operation of the fuel cell and the battery is categorized into four operating modes based on the battery SOC. And the optimal power distribution is solved by minimizing the equivalent hydrogen consumption. The equivalent factor is set to 2.48.
4.1. Evaluation of Car-Following Performance
4.2. Evaluation of Economic Performance
4.2.1. General Evaluation Results
4.2.2. Energy-Saving Mechanism
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, L.; Lin, J.; Qiu, R. Characterizing the Toxic Gaseous Emissions of Gasoline and Diesel Vehicles Based on a Real-World on-Road Investigation. J. Clean. Prod. 2021, 286, 124957. [Google Scholar] [CrossRef]
- Deng, R.; Liu, Y.; Chen, W.; Liang, H. A Survey on Electric Buses-Energy Storage, Power Management, and Charging Scheduling. IEEE Trans. Intell. Transp. Syst. 2021, 22, 9–22. [Google Scholar] [CrossRef]
- Cano, Z.P.; Banham, D.; Ye, S.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z. Batteries and Fuel Cells for Emerging Electric Vehicle Markets. Nat. Energy 2018, 3, 279–289. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Z.; Wang, F.; Ouyang, Q.; Su, H. Optima Oxygen Excess Ratio Control for Pem Fuel Cells. IEEE Trans. Control Syst. Technol. 2018, 26, 1711–1721. [Google Scholar] [CrossRef]
- Ahmadi, S.; Bathaee, S.M.T.; Hosseinpour, A.H. Improving Fuel Economy and Performance of a Fuel-Cell Hybrid Electric Vehicle (Fuel-Cell, Battery, and Ultra-Capacitor) Using Optimized Energy Management Strategy. Energy Convers. Manag. 2018, 160, 74–84. [Google Scholar] [CrossRef]
- Zhu, L.; Yu, F.R.; Wang, Y.; Ning, B.; Tang, T. Big Data Analytics in Intelligent Transportation Systems: A Survey. IEEE Trans. Intell. Transp. Syst. 2019, 20, 383–398. [Google Scholar] [CrossRef]
- MacHardy, Z.; Khan, A.; Obana, K.; Iwashina, S. V2x Access Technologies: Regulation, Research, and Remaining Challenges. IEEE Commun. Surv. Tutor. 2018, 20, 1858–1877. [Google Scholar] [CrossRef]
- Shi, X.; Li, X. Constructing a Fundamental Diagram for Traffic Flow with Automated Vehicles: Methodology and Demonstration. Transp. Res. Part B-Methodol. 2021, 150, 279–292. [Google Scholar] [CrossRef]
- Arevalo-Castiblanco, M.F.; Pachon, J.; Tellez-Castro, D.; Mojica-Nava, E. Cooperative Cruise Control for Intelligent Connected Vehicles: A Bargaining Game Approach. Sustainability 2023, 15, 11898. [Google Scholar] [CrossRef]
- Jia, Y.; Nie, Z.; Wang, W.; Lian, Y.; Guerrero, J.M.; Outbib, R. Eco-Driving Policy for Connected and Automated Fuel Cell Hybrid Vehicles Platoon in Dynamic Traffic Scenarios. Int. J. Hydrogen Energy 2023, 48, 18816–18834. [Google Scholar] [CrossRef]
- van de Hoef, S.; Johansson, K.H.; Dimarogonas, D.V. Fuel-Efficient En Route Formation of Truck Platoons. IEEE Trans. Intell. Transp. Syst. 2018, 19, 102–112. [Google Scholar] [CrossRef]
- Cha, M.; Enshaei, H.; Nguyen, H.; Jayasinghe, S.G. Towards a Future Electric Ferry Using Optimisation-Based Power Management Strategy in Fuel Cell and Battery Vehicle Application-a Review. Renew. Sustain. Energy Rev. 2023, 183, 113470. [Google Scholar] [CrossRef]
- Van Phan, L.; Hieu, L.H.; Chi, K.D.; Takano, H.; Duc, T.N. An Improved State Machine-Based Energy Management Strategy for Renewable Energy Microgrid with Hydrogen Storage System. Energy Rep. 2023, 9, 194–201. [Google Scholar] [CrossRef]
- Liu, C.-Z.; Li, L.; Yong, J.-W.; Muhammad, F.; Cheng, S.; Wang, X.-Y.; Li, W.-B. The Bionics and Its Application in Energy Management Strategy of Plug-in Hybrid Electric Vehicle Formation. IEEE Trans. Intell. Transp. Syst. 2021, 22, 7860–7874. [Google Scholar] [CrossRef]
- Guo, G.; Gong, Y. Energy Management of Intelligent Solar Parking Lot with Ev Charging and Fcev Refueling Based on Deep Reinforcement Learning. Int. J. Electr. Power Energy Syst. 2022, 140, 108061. [Google Scholar] [CrossRef]
- Wang, D.; Mei, L.; Xiao, F.; Song, C.; Qi, C.; Song, S. Energy Management Strategy for Fuel Cell Electric Vehicles Based on Scalable Reinforcement Learning in Novel Environment. Int. J. Hydrog. Energy 2024, 59, 668–678. [Google Scholar] [CrossRef]
- Shabbir, W.; Evangelou, S.A. Threshold-Changing Control Strategy for Series Hybrid Electric Vehicles. Appl. Energy 2019, 235, 761–775. [Google Scholar] [CrossRef]
- Lee, H.; Jeong, J.; Park, Y.-I.; Chao, S.W. Energy Management Strategy of Hybrid Electric Vehicle Using Battery State of Charge Trajectory Information. Int. J. Precis. Eng. Manuf. -Green Technol. 2017, 4, 79–86. [Google Scholar] [CrossRef]
- Sanchez, M.; Delprat, S.; Hofman, T. Energy Management of Hybrid Vehicles with State Constraints: A Penalty and Implicit Hamiltonian Minimization Approach. Appl. Energy 2020, 260, 114149. [Google Scholar] [CrossRef]
- Song, Z.; Zhang, X.; Li, J.; Hofmann, H.; Ouyang, M.; Du, J. Component Sizing Optimization of Plug-in Hybrid Electric Vehicles with the Hybrid Energy Storage System. Energy 2018, 144, 393–403. [Google Scholar] [CrossRef]
- Li, T.; Liu, H.; Wang, H.; Yao, Y. Hierarchical Predictive Control-Based Economic Energy Management for Fuel Cell Hybrid Construction Vehicles. Energy 2020, 198, 117327. [Google Scholar] [CrossRef]
- Shen, P.; Zhao, Z.; Zhan, X.; Li, J.; Guo, Q. Optimal Energy Management Strategy for a Plug-in Hybrid Electric Commercial Vehicle Based on Velocity Prediction. Energy 2018, 155, 838–852. [Google Scholar] [CrossRef]
- Mei, P.; Karimi, H.R.; Xie, H.; Chen, F.; Huang, C.; Yang, S. A Deep Reinforcement Learning Approach to Energy Management Control with Connected Information for Hybrid Electric Vehicles. Eng. Appl. Artif. Intell. 2023, 123, 106239. [Google Scholar] [CrossRef]
- Yang, R.; Yang, X.; Huang, W.; Zhang, S. Energy Management of the Power-Split Hybrid Electric City Bus Based on the Stochastic Model Predictive Control. IEEE Access 2021, 9, 2055–2071. [Google Scholar] [CrossRef]
- Lee, H.; Cha, S.W. Reinforcement Learning Based on Equivalent Consumption Minimization Strategy for Optimal Control of Hybrid Electric Vehicles. IEEE Access 2021, 9, 860–871. [Google Scholar] [CrossRef]
- Mounica, V.; Obulesu, Y.P. Hybrid Power Management Strategy with Fuel Cell, Battery, and Supercapacitor for Fuel Economy in Hybrid Electric Vehicle Application. Energies 2022, 15, 4185. [Google Scholar] [CrossRef]
- Guo, J.; Luo, Y.; Li, K. Adaptive Fuzzy Sliding Mode Control for Coordinated Longitudinal and Lateral Motions of Multiple Autonomous Vehicles in a Platoon. Sci. China-Technol. Sci. 2017, 60, 576–586. [Google Scholar] [CrossRef]
- Tao, W.; Zhu, M.; Chen, S.; Cheng, X.; Wen, Y.; Zhang, W.; Negenborn, R.R.; Pang, Y. Coordination and Optimization Control Framework for Vessels Platooning in Inland Waterborne Transportation System. IEEE Trans. Intell. Transp. Syst. 2023, 24, 15667–15686. [Google Scholar] [CrossRef]
- Han, X.; Ma, R.; Zhang, H.M. Energy-Aware Trajectory Optimization of Cav Platoons through a Signalized Intersection. Transp. Res. Part C-Emerg. Technol. 2020, 118, 102652. [Google Scholar] [CrossRef]
- Borneo, A.; Zerbato, L.; Miretti, F.; Tota, A.; Galvagno, E.; Misul, D.A. Platooning Cooperative Adaptive Cruise Control for Dynamic Performance and Energy Saving: A Comparative Study of Linear Quadratic and Reinforcement Learning-Based Controllers. Appl. Sci. 2023, 13, 10459. [Google Scholar] [CrossRef]
- Zhu, S.; Li, D.; Liu, M. Hindrance-Aware Platoon Formation for Connected Vehicles in Mixed Traffic. IEEE Trans. Intell. Transp. Syst. 2022, 23, 24876–24890. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, P.; Zhou, Y.; Ding, F.; Wang, C.; Tan, H. Platoon Trajectories Generation: A Unidirectional Interconnected Lstm-Based Car-Following Model. IEEE Trans. Intell. Transp. Syst. 2022, 23, 2071–2081. [Google Scholar] [CrossRef]
- Li, F.; Wang, Y. Cooperative Adaptive Cruise Control for String Stable Mixed Traffic: Benchmark and Human-Centered Design. IEEE Trans. Intell. Transp. Syst. 2017, 18, 3473–3485. [Google Scholar] [CrossRef]
- Xu, L.; Zhuang, W.; Yin, G.; Bian, C. Stable Longitudinal Control of Heterogeneous Vehicular Platoon with Disturbances and Information Delays. IEEE Access 2018, 6, 69794–69806. [Google Scholar] [CrossRef]
- Yin, Y.; Huang, X.; Zhan, S.; Gou, H.; Zhang, X.; Wang, F. Hierarchical Energy Management Control Based on Different Communication Topologies for Hybrid Electric Vehicle Platoon. J. Clean. Prod. 2023, 412, 137414. [Google Scholar] [CrossRef]
- Liu, R.; Ren, Y.; Yu, H.; Li, Z.; Jiang, H. Connected and Automated Vehicle Platoon Maintenance under Communication Failures. Veh. Commun. 2022, 35, 100467. [Google Scholar] [CrossRef]
- Hou, J.; Chen, G.; Huang, J.; Qiao, Y.; Xiong, L.; Wen, F.; Knoll, A.; Jiang, C. Large-Scale Vehicle Platooning: Advances and Challenges in Scheduling and Planning Techniques. Engineering 2023, 28, 26–48. [Google Scholar] [CrossRef]
- Feng, Y.; He, D.; Guan, Y. Composite Platoon Trajectory Planning Strategy for Intersection Throughput Maximization. IEEE Trans. Veh. Technol. 2019, 68, 6305–6319. [Google Scholar] [CrossRef]
- Sarker, A.; Qiu, C.; Shen, H. Connectivity Maintenance for Next-Generation Decentralized Vehicle Platoon Networks. IEEE-ACM Trans. Netw. 2020, 28, 1449–1462. [Google Scholar] [CrossRef]
- Peng, H.; Li, D.; Ye, Q.; Abboud, K.; Zhao, H.; Zhuang, W.; Shen, X. Resource Allocation for Cellular-Based Inter-Vehicle Communications in Autonomous Multiplatoons. IEEE Trans. Veh. Technol. 2017, 66, 11249–11263. [Google Scholar] [CrossRef]
- Pi, D.; Xue, P.; Wang, W.; Xie, B.; Wang, H.; Wang, X.; Yin, G. Automotive Platoon Energy-Saving: A Review. Renew. Sustain. Energy Rev. 2023, 179, 113268. [Google Scholar] [CrossRef]
- Ma, X.; Zhao, J.; Liao, J.; Zhang, Z. Intelligent Reflecting Surface-Assisted Federated Learning in Multi-Platoon Collaborative Networks. Digit. Commun. Netw. 2023, 9, 628–637. [Google Scholar] [CrossRef]
- Jiang, R.; Hu, M.B.; Zhang, H.M.; Gao, Z.-Y.; Jia, B.; Wu, Q.-S. On Some Experimental Features of Car-Following Behavior and How to Model Them. Transp. Res. Part B-Methodol. 2015, 80, 338–354. [Google Scholar] [CrossRef]
- Guo, X.-G.; Xu, W.-D.; Wang, J.-L.; Park, J.H. Distributed Neuroadaptive Fault-Tolerant Sliding-Mode Control for 2-D Plane Vehicular Platoon Systems with Spacing Constraints and Unknown Direction Faults. Automatica 2021, 129, 109675. [Google Scholar] [CrossRef]
- Yu, L.; Li, K.; Kuang, Z.; Wang, Z. Decentralized Motion Planning for Intelligent Bus Platoon Based on Hierarchical Optimization Framework. Transp. Res. Part C-Emerg. Technol. 2023, 148, 104025. [Google Scholar] [CrossRef]
- Gu, Z.; Liu, Z.; Wang, Q.; Mao, Q.; Shuai, Z.; Ma, Z. Reinforcement Learning-Based Approach for Minimizing Energy Loss of Driving Platoon Decisions. Sensors 2023, 23, 4176. [Google Scholar] [CrossRef] [PubMed]
- Parvini, M.; Javan, M.R.; Mokari, N.; Abbasi, B.; Jorswieck, E.A. Aoi-Aware Resource Allocation for Platoon-Based C-V2x Networks Via Multi-Agent Multi-Task Reinforcement Learning. IEEE Trans. Veh. Technol. 2023, 72, 9880–9896. [Google Scholar] [CrossRef]
- Li, B.; Xie, K.; Huang, X.; Wu, Y.; Xie, S. Deep Reinforcement Learning Based Incentive Mechanism Design for Platoon Autonomous Driving with Social Effect. IEEE Trans. Veh. Technol. 2022, 71, 7719–7729. [Google Scholar] [CrossRef]
- Xiao, T.; Chen, C.; Dong, M.; Ota, K.; Liu, L.; Dustdar, S. Multi-Agent Reinforcement Learning-Based Trading Decision-Making in Platooning-Assisted Vehicular Networks. IEEE-ACM Trans. Netw. 2023, 32, 2143–2158. [Google Scholar] [CrossRef]
- Ruan, T.; Wang, H.; Zhou, L.; Zhang, Y.; Dong, C.; Zuo, Z. Impacts of Information Flow Topology on Traffic Dynamics of Cav-Mv Heterogeneous Flow. IEEE Trans. Intell. Transp. Syst. 2022, 23, 20820–20835. [Google Scholar] [CrossRef]
- Li, S.; Chu, L.; Hu, J.; Pu, S.; Li, J.; Hou, Z.; Sun, W. A Novel a-Ecms Energy Management Strategy Based on Dragonfly Algorithm for Plug-in Fcevs. Sensors 2023, 23, 1192. [Google Scholar] [CrossRef] [PubMed]
Parameters | Value | Unit |
---|---|---|
Mass | 1860 | kg |
Tire Rolling Radius | 0.35 | m |
Rolling Resistance Coefficient | 0.015 | / |
Aerodynamic Drag Coefficient | 0.3 | / |
Frontal Area | 2 | m2 |
Air Density | 1.18 | kg/m3 |
Motor Speed Range | 0~14,000 | rpm |
Motor Torque Range | −137~137 | Nm |
Maximum Power of FC Stack | 61.56 | kW |
Battery Capacity | 40 | Ah |
Vehicle Individuals | Methods | Initial SOC | Ending SOC | EHC 2 per 100 km (kg/100 km) | EHC 2 (g) | HC 1 of the Fuel Cell (g) | EHC 2 of the Battery (g) | Optimality (%) |
---|---|---|---|---|---|---|---|---|
Vehicle 1 | CACC-RB | 0.400 | 0.403 | 0.906 | 149.693 | 159.564 | −9.870 | / |
eCACC-RB | 0.400 | 0.403 | 0.906 | 149.693 | 159.564 | −9.870 | / | |
CACC-ECMS | 0.400 | 0.371 | 0.892 | 147.261 | 127.365 | 19.896 | 1.625 | |
eCACC-ECMS | 0.400 | 0.371 | 0.892 | 147.261 | 127.365 | 19.896 | 1.625 | |
Vehicle 2 | CACC-RB | 0.450 | 0.401 | 0.902 | 148.924 | 115.128 | 33.796 | / |
eCACC-RB | 0.450 | 0.394 | 0.891 | 147.077 | 107.759 | 39.318 | 1.547 | |
CACC-ECMS | 0.450 | 0.376 | 0.877 | 144.802 | 92.400 | 52.402 | 2.768 | |
eCACC-ECMS | 0.450 | 0.375 | 0.866 | 142.971 | 90.105 | 52.867 | 3.997 | |
Vehicle 3 | CACC-RB | 0.500 | 0.401 | 0.906 | 149.493 | 79.026 | 70.467 | / |
eCACC-RB | 0.500 | 0.400 | 0.895 | 147.682 | 76.460 | 71.223 | 1.211 | |
CACC-ECMS | 0.500 | 0.373 | 0.874 | 144.314 | 53.218 | 91.095 | 3.464 | |
eCACC-ECMS | 0.500 | 0.368 | 0.864 | 142.594 | 47.635 | 94.959 | 4.614 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Chu, L.; Fu, P.; Pu, S.; Wang, Y.; Li, J.; Guo, Z. Energy-Oriented Hybrid Cooperative Adaptive Cruise Control for Fuel Cell Electric Vehicle Platoons. Sensors 2024, 24, 5065. https://doi.org/10.3390/s24155065
Li S, Chu L, Fu P, Pu S, Wang Y, Li J, Guo Z. Energy-Oriented Hybrid Cooperative Adaptive Cruise Control for Fuel Cell Electric Vehicle Platoons. Sensors. 2024; 24(15):5065. https://doi.org/10.3390/s24155065
Chicago/Turabian StyleLi, Shibo, Liang Chu, Pengyu Fu, Shilin Pu, Yilin Wang, Jinwei Li, and Zhiqi Guo. 2024. "Energy-Oriented Hybrid Cooperative Adaptive Cruise Control for Fuel Cell Electric Vehicle Platoons" Sensors 24, no. 15: 5065. https://doi.org/10.3390/s24155065
APA StyleLi, S., Chu, L., Fu, P., Pu, S., Wang, Y., Li, J., & Guo, Z. (2024). Energy-Oriented Hybrid Cooperative Adaptive Cruise Control for Fuel Cell Electric Vehicle Platoons. Sensors, 24(15), 5065. https://doi.org/10.3390/s24155065