Impact of Multi-Scattered LiDAR Returns in Fog
Abstract
:1. Introduction
2. Materials and Methods
2.1. Green’s Function in Terms of Scattering Orders
2.2. Monte Carlo Simulation
3. Results and Discussion
3.1. Validation of the Monte Carlo Software
3.2. Simulations of the LiDAR Geometry
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haugerud, R.A.; Harding, D.J.; Johnson, S.Y.; Harless, J.L.; Weaver, C.S.; Sherrod, B.L. High-resolution lidar topography of the Puget Lowland, Washington. GSA Today 2003, 13, 4–10. [Google Scholar] [CrossRef]
- Tonina, D.; McKean, J.A.; Benjankar, R.M.; Wright, C.W.; Goode, J.R.; Chen, Q.; Reeder, W.J.; Carmichael, R.A.; Edmondson, M.R. Mapping river bathymetries: Evaluating topobathymetric LiDAR survey. Earth Surf. Process. Landforms 2019, 44, 507–520. [Google Scholar] [CrossRef]
- Xiao-Min, T.; Dong, L.; Ji-Wei, X.; Zhen-Zhu, W.; Bang-Xin, W.; De-Cheng, W.; Zhi-Qing, Z.; Chen-Bo, X.; Ying-Jian, W. Review of lidar technology for atmosphere monitoring. J. Atmos. Environ. Opt. 2018, 13, 321. [Google Scholar]
- Comerón, A.; Muñoz-Porcar, C.; Rocadenbosch, F.; Rodríguez-Gómez, A.; Sicard, M. Current research in lidar technology used for the remote sensing of atmospheric aerosols. Sensors 2017, 17, 1450. [Google Scholar] [CrossRef] [PubMed]
- Malavazi, F.B.; Guyonneau, R.; Fasquel, J.B.; Lagrange, S.; Mercier, F. LiDAR-only based navigation algorithm for an autonomous agricultural robot. Comput. Electron. Agric. 2018, 154, 71–79. [Google Scholar] [CrossRef]
- Khan, M.U.; Zaidi, S.A.A.; Ishtiaq, A.; Bukhari, S.U.R.; Samer, S.; Farman, A. A comparative survey of lidar-slam and lidar based sensor technologies. In Proceedings of the 2021 Mohammad Ali Jinnah University International Conference on Computing (MAJICC), Karachi, Pakistan, 15–17 July 2021; pp. 1–8. [Google Scholar]
- Li, Y.; Ibanez-Guzman, J. Lidar for autonomous driving: The principles, challenges, and trends for automotive lidar and perception systems. IEEE Signal Process. Mag. 2020, 37, 50–61. [Google Scholar] [CrossRef]
- Hahner, M.; Sakaridis, C.; Dai, D.; Van Gool, L. Fog simulation on real LiDAR point clouds for 3D object detection in adverse weather. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11 October 2021; pp. 15283–15292. [Google Scholar]
- Dreissig, M.; Scheuble, D.; Piewak, F.; Boedecker, J. Survey on lidar perception in adverse weather conditions. In Proceedings of the 2023 IEEE Intelligent Vehicles Symposium (IV), Anchorage, AK, USA, 4–7 June 2023; pp. 1–8. [Google Scholar]
- Hahner, M.; Sakaridis, C.; Bijelic, M.; Heide, F.; Yu, F.; Dai, D.; Van Gool, L. Lidar snowfall simulation for robust 3d object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 16364–16374. [Google Scholar]
- Rasshofer, R.H.; Spies, M.; Spies, H. Influences of weather phenomena on automotive laser radar systems. Adv. Radio Sci. 2011, 9, 49–60. [Google Scholar] [CrossRef]
- Kunkel, K.E.; Weinman, J. Monte Carlo analysis of multiply scattered lidar returns. J. Atmos. Sci. 1976, 33, 1772–1781. [Google Scholar] [CrossRef]
- Bissonnette, L.R. Multiple-scattering lidar equation. Appl. Opt. 1996, 35, 6449–6465. [Google Scholar] [CrossRef] [PubMed]
- Shendeleva, M.L. Time-domain solution to the radiative transfer equation in an infinite turbid medium with linearly anisotropic scattering. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2015, 32, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Liemert, A.; Kienle, A. Green’s function of the time-dependent radiative transport equation in terms of rotated spherical harmonics. Phys. Rev. E 2012, 86, 036603. [Google Scholar] [CrossRef] [PubMed]
- Eloranta, E.W. Calculation of Doubly Scattered Lidar Returns. Ph.D. Thesis, The University of Wisconsin-Madison, Madison, WI, USA, 1972. [Google Scholar]
- Lafortune, E.P.; Willems, Y.D. Rendering participating media with bidirectional path tracing. In Proceedings of the Rendering Techniques’ 96: Proceedings of the Eurographics Workshop, Porto, Portugal, 17–19 June 1996; pp. 91–100. [Google Scholar]
- Hevisov, D.; Reitzle, D.; Liemert, A.; Kienle, A. An Integral-Equation-Based Variance Reduction Method for Accelerated Monte Carlo Simulations. Photonics 2024, 11, 5. [Google Scholar] [CrossRef]
- Tampieri, F.; Tomasi, C. Size distribution models of fog and cloud droplets in terms of the modified gamma function. Tellus 1976, 28, 333–347. [Google Scholar] [CrossRef]
- Warren, M.E. Automotive LIDAR technology. In Proceedings of the 2019 Symposium on VLSI Circuits, Kyoto, Japan, 9–14 June 2019; pp. C254–C255. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hevisov, D.; Liemert, A.; Reitzle, D.; Kienle, A. Impact of Multi-Scattered LiDAR Returns in Fog. Sensors 2024, 24, 5121. https://doi.org/10.3390/s24165121
Hevisov D, Liemert A, Reitzle D, Kienle A. Impact of Multi-Scattered LiDAR Returns in Fog. Sensors. 2024; 24(16):5121. https://doi.org/10.3390/s24165121
Chicago/Turabian StyleHevisov, David, André Liemert, Dominik Reitzle, and Alwin Kienle. 2024. "Impact of Multi-Scattered LiDAR Returns in Fog" Sensors 24, no. 16: 5121. https://doi.org/10.3390/s24165121
APA StyleHevisov, D., Liemert, A., Reitzle, D., & Kienle, A. (2024). Impact of Multi-Scattered LiDAR Returns in Fog. Sensors, 24(16), 5121. https://doi.org/10.3390/s24165121