Handheld Near-Infrared Spectroscopy for Undried Forage Quality Estimation
Abstract
:1. Introduction
- To assess the precision and accuracy of multiple handheld Near-Infrared Spectroscopy (NIRS) devices when used for on-farm forage evaluation, particularly focusing on the robustness of calibrations for nutritive value determination;
- To examine if different portable instruments and scanning patterns influence the quality of prediction;
- To evaluate the effects of using dried unground samples for forage quality prediction.
2. Materials and Method
2.1. Samples and Reference Analysis
2.2. Wet Chemistry
2.3. Model Calibration
2.4. Evaluation
3. Results and Discussion
3.1. Spectral Data
3.2. Calibration Results
3.3. Validation Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Explained Variance
Instrument | Variable | LV1 | LV2 | LV3 | LV4 | LV5 | LV6 | LV7 | LV8 | LV9 | LV10 |
---|---|---|---|---|---|---|---|---|---|---|---|
AgroCares Static | ADF | 69.64 | 9.99 | 1.89 | 5.29 | 2.66 | 2.74 | 1.73 | 2.22 | 0.50 | 0.80 |
ADL | 75.36 | 3.10 | 3.93 | 1.58 | 4.79 | 2.72 | 1.73 | 3.06 | 0.49 | 0.36 | |
CP | 34.57 | 40.04 | 3.19 | 4.97 | 5.35 | 2.54 | 2.17 | 1.89 | 0.99 | 0.91 | |
IVTD | 66.68 | 12.45 | 1.59 | 4.12 | 3.94 | 3.21 | 1.77 | 1.49 | 1.28 | 0.83 | |
NDFD | 75.40 | 4.20 | 3.90 | 1.83 | 2.45 | 2.76 | 2.93 | 2.62 | 0.80 | 0.68 | |
aNDF | 38.45 | 35.27 | 3.75 | 5.49 | 4.13 | 3.71 | 2.43 | 2.03 | 0.56 | 0.75 | |
AgroCares Moving | ADF | 72.73 | 11.85 | 1.76 | 5.23 | 2.02 | 1.75 | 0.52 | 1.52 | 0.26 | 0.26 |
ADL | 79.69 | 3.66 | 4.60 | 1.87 | 2.07 | 3.65 | 0.94 | 1.01 | 0.17 | 0.29 | |
CP | 37.47 | 42.25 | 2.13 | 7.73 | 1.68 | 3.31 | 1.06 | 1.09 | 0.51 | 0.21 | |
IVTD | 67.76 | 15.55 | 1.78 | 6.10 | 1.02 | 1.57 | 1.75 | 1.66 | 0.29 | 0.25 | |
NDFD | 78.51 | 2.07 | 4.56 | 2.58 | 1.23 | 6.11 | 1.23 | 1.18 | 0.18 | 0.33 | |
aNDF | 42.04 | 38.25 | 2.75 | 5.86 | 3.70 | 1.75 | 0.70 | 1.75 | 0.49 | 0.21 | |
NEOSpectra Static | ADF | 67.24 | 13.98 | 7.18 | 3.96 | 2.41 | 0.70 | 1.23 | 0.42 | 0.53 | 0.32 |
ADL | 74.43 | 5.09 | 6.78 | 5.11 | 3.41 | 0.64 | 1.10 | 0.63 | 0.44 | 0.31 | |
CP | 36.26 | 42.49 | 6.67 | 5.75 | 1.79 | 1.20 | 0.63 | 1.28 | 1.00 | 0.45 | |
IVTD | 62.96 | 17.68 | 5.75 | 5.34 | 1.61 | 1.39 | 1.68 | 0.50 | 0.59 | 0.34 | |
NDFD | 73.31 | 2.32 | 9.77 | 6.12 | 1.84 | 1.48 | 1.91 | 0.47 | 0.43 | 0.35 | |
aNDF | 36.99 | 38.83 | 10.39 | 4.16 | 3.23 | 0.52 | 1.70 | 0.45 | 0.90 | 0.40 | |
NEOSpectra Moving | ADF | 67.69 | 12.72 | 4.56 | 7.72 | 1.77 | 1.13 | 1.12 | 0.46 | 0.55 | 0.28 |
ADL | 73.90 | 4.19 | 8.23 | 5.41 | 2.66 | 0.82 | 0.45 | 0.84 | 1.19 | 0.28 | |
CP | 35.14 | 39.27 | 3.32 | 13.64 | 2.10 | 0.80 | 1.78 | 0.98 | 0.46 | 0.40 | |
IVTD | 60.10 | 15.80 | 2.24 | 13.97 | 1.72 | 1.27 | 1.47 | 0.54 | 0.60 | 0.28 | |
NDFD | 72.91 | 1.90 | 7.88 | 9.07 | 2.23 | 0.87 | 1.05 | 1.08 | 0.73 | 0.25 | |
aNDF | 38.82 | 34.14 | 3.75 | 15.01 | 2.22 | 1.30 | 0.78 | 0.85 | 0.33 | 0.59 | |
NEOSpectra TurnTable | ADF | 65.80 | 16.21 | 4.45 | 6.11 | 2.14 | 1.01 | 0.48 | 0.87 | 0.46 | 0.26 |
ADL | 72.69 | 6.89 | 6.00 | 3.80 | 5.30 | 1.02 | 0.49 | 0.31 | 1.06 | 0.19 | |
CP | 30.11 | 50.20 | 6.68 | 3.97 | 2.36 | 1.91 | 0.48 | 1.09 | 0.58 | 0.32 | |
IVTD | 59.73 | 20.88 | 2.94 | 7.73 | 2.67 | 1.44 | 0.48 | 1.05 | 0.46 | 0.29 | |
NDFD | 75.94 | 2.90 | 7.23 | 2.55 | 4.24 | 3.00 | 0.50 | 0.75 | 0.55 | 0.19 | |
aNDF | 33.29 | 45.87 | 8.35 | 3.29 | 2.71 | 1.56 | 0.31 | 1.25 | 0.46 | 0.41 | |
Trinamix Static | ADF | 74.94 | 10.20 | 2.82 | 2.63 | 1.33 | 2.96 | 1.53 | 0.70 | 0.27 | 0.59 |
ADL | 79.72 | 5.00 | 2.72 | 1.96 | 1.78 | 3.62 | 1.22 | 1.35 | 0.65 | 0.30 | |
CP | 42.12 | 37.73 | 5.05 | 1.99 | 2.13 | 2.41 | 1.72 | 3.17 | 0.45 | 1.02 | |
IVTD | 70.04 | 13.63 | 2.41 | 3.13 | 1.39 | 2.30 | 0.73 | 3.34 | 0.57 | 0.55 | |
NDFD | 80.21 | 3.67 | 3.60 | 1.17 | 2.53 | 2.12 | 2.01 | 1.96 | 0.25 | 0.54 | |
aNDF | 45.70 | 33.24 | 5.78 | 2.67 | 1.75 | 4.03 | 2.68 | 0.53 | 0.70 | 0.81 |
References
- Gislon, G.; Ferrero, F.; Bava, L.; Borreani, G.; Prà, A.D.; Pacchioli, M.T.; Sandrucci, A.; Zucali, M.; Tabacco, E. Forage systems and sustainability of milk production: Feed efficiency, environmental impacts and soil carbon stocks. J. Clean. Prod. 2020, 260, 121012. [Google Scholar] [CrossRef]
- Rukundo, I.R.; Danao, M.G.C.; Mitchell, R.B.; Masterson, S.D.; Weller, C.L. Comparing the use of handheld and benchtop NIR spectrometers in predicting nutritional value of forage. Appl. Eng. Agric. 2021, 37, 171–181. [Google Scholar] [CrossRef]
- Cherney, J.H.; Digman, M.F.; Cherney, D.J. Handheld NIRS for forage evaluation. Comput. Electron. Agric. 2021, 190, 106469. [Google Scholar] [CrossRef]
- Digman, M.F.; Cherney, J.H.; Cherney, D.J.R. The Relative Performance of a Benchtop Scanning Monochromator and Handheld Fourier Transform Near-Infrared Reflectance Spectrometer in Predicting Forage Nutritive Value. Sensors 2022, 22, 658. [Google Scholar] [CrossRef] [PubMed]
- Cozzolino, D.; Labandera, M. Determination of dry matter and crude protein contents of undried forages by near-infrared reflectance spectroscopy. J. Sci. Food Agric. 2002, 82, 380–384. [Google Scholar] [CrossRef]
- Acosta, J.J.; Castillo, M.S.; Hodge, G.R. Comparison of benchtop and handheld near-infrared spectroscopy devices to determine forage nutritive value. Crop Sci. 2020, 60, 3410–3422. [Google Scholar] [CrossRef]
- Feng, X.; Cherney, J.H.; Cherney, D.J.R.; Digman, M.F. Practical Considerations for Using the NeoSpectra-Scanner Handheld Near-Infrared Reflectance Spectrometer to Predict the Nutritive Value of Undried Ensiled Forage. Sensors 2023, 23, 1750. [Google Scholar] [CrossRef] [PubMed]
- Berzaghi, P.; Cherney, J.H.; Casler, M.D. Prediction performance of portable near infrared reflectance instruments using preprocessed dried, ground forage samples. Comput. Electron. Agric. 2021, 182, 106013. [Google Scholar] [CrossRef]
- Barton, F.; Burdick, D. Prediction of forage quality with NIR reflectance spectroscopy. In Proceedings of the XIV International Grassland Congress, Lexington, KY, USA, 15–24 June 1981; CRC Press: Boca Raton, FL, USA, 2019; pp. 532–534. [Google Scholar]
- Shenk, J.S.; Westerhaus, M.O.; Hoover, M.R. Analysis of Forages by Infrared Reflectance1. J. Dairy Sci. 1979, 62, 807–812. [Google Scholar] [CrossRef]
- Beć, K.B.; Grabska, J.; Siesler, H.W.; Huck, C.W. Handheld near-infrared spectrometers: Where are we heading? NIR News 2020, 31, 28–35. [Google Scholar] [CrossRef]
- Rego, G.; Ferrero, F.; Valledor, M.; Campo, J.C.; Forcada, S.; Royo, L.J.; Soldado, A. A portable IoT NIR spectroscopic system to analyze the quality of dairy farm forage. Comput. Electron. Agric. 2020, 175, 105578. [Google Scholar] [CrossRef]
- Beć, K.B.; Grabska, J.; Huck, C.W. Principles and Applications of Miniaturized Near-Infrared (NIR) Spectrometers. Chemistry 2021, 27, 1514–1532. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; De Gea Neves, M.; Noda, I.; Guedes, G.M.; Silva Ferreira, A.C.; Pfeifer, F.; Chen, X.; Siesler, H.W. Handheld Near-Infrared Spectroscopy: State-of-the-Art Instrumentation and Applications in Material Identification, Food Authentication, and Environmental Investigations. Chemosensors 2023, 11, 272. [Google Scholar] [CrossRef]
- Bedord, L. John Deere Adds Manure Constituent Sensing to HarvestLab 3000. 2019. Available online: https://www.agriculture.com/news/technology/john-deere-adds-manure-constituent-sensing-to-harvestlab-3000 (accessed on 6 March 2024).
- Chen, L.; Xing, L.; Han, L. Review of the application of near-infrared spectroscopy technology to determine the chemical composition of animal manure. J. Environ. Qual. 2013, 42, 1015–1028. [Google Scholar] [CrossRef] [PubMed]
- Hart, L.; Huguenin-Elie, O.; Latsch, R.; Simmler, M.; Dubois, S.; Umstatter, C. Comparison of Spectral Reflectance-Based Smart Farming Tools and a Conventional Approach to Determine Herbage Mass and Grass Quality on Farm. Remote Sens. 2020, 12, 3256. [Google Scholar] [CrossRef]
- Muncan, J.; Tsenkova, R. Aquaphotomics-from innovative knowledge to integrative platform in science and technology. Molecules 2019, 24, 2742. [Google Scholar] [CrossRef] [PubMed]
- Tsenkova, R.; Munćan, J.; Pollner, B.; Kovacs, Z. Essentials of aquaphotomics and its chemometrics approaches. Front. Chem. 2018, 6, 363. [Google Scholar] [CrossRef] [PubMed]
- Valentine, M.E.; Karayilanli, E.; Cherney, J.H.; Cherney, D.J. Comparison of in vitro long digestion methods and digestion rates for diverse forages. Crop Sci. 2019, 59, 422–435. [Google Scholar] [CrossRef]
- Roelofs, R.; Shankar, V.; Recht, B.; Fridovich-Keil, S.; Hardt, M.; Miller, J.; Schmidt, L. A meta-analysis of overfitting in machine learning. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2019; pp. 9175–9185. [Google Scholar]
- Mendes de Oliveira, D.; Pasquini, C.; Rita de Araújo Nogueira, A.; Dias Rabelo, M.; Lúcia Ferreira Simeone, M.; Batista de Souza, G. Comparative analysis of compact and benchtop near-infrared spectrometers for forage nutritional trait measurements. Microchem. J. 2023, 196, 109682. [Google Scholar] [CrossRef]
- Malley, D.F.; McClure, C.; Martin, P.D.; Buckley, K.; McCaughey, W.P. Compositional Analysis of Cattle Manure During Composting Using a Field-Portable Near-Infrared Spectrometer. Commun. Soil Sci. Plant Anal. 2005, 36, 455–475. [Google Scholar] [CrossRef]
- Williams, P. The RPD Statistic: A Tutorial Note. NIR News 2014, 25, 22–26. [Google Scholar] [CrossRef]
- Williams, P. Influence of water on prediction of composition and quality factors: The aquaphotomics of low moisture agricultural materials. J. Infrared Spectrosc. 2009, 17, 315–328. [Google Scholar] [CrossRef]
Property | AgroCares F-Series | TrinamiX | NEO Spectra |
---|---|---|---|
Detector Type | MEMS | Linear Variable Filter | MEMS-FT-NIR |
Spectral Range (nm) | 1450–2450 | 1450–2450 | 1350–2500 |
Sample Scanning | Contact | Contact | Contact |
Level of Success [23] | R2 [23] | RPD Value [24] | Classification [24] | Application [24] |
---|---|---|---|---|
Not useful | <0.80 | <2.0 | Very poor | Not recommended |
Moderately Successful | 0.80 to 0.90 | 2.0 to 2.5 | Poor | Rough screening |
2.5 to 3.0 | Fair | Screening | ||
Successful | 0.90 to 0.95 | 3.0 to 3.5 | Good | Quality control |
3.5 to 4.0 | Very good | Process control | ||
Excelent | >0.95 | >4.0 | Excellent | Any application |
Wavelength (nm) | 1460 | 1778 | 1904 | 2208 | 2384 |
Relative Intensity | Large | Very Small | Very Large | Very Small | Very Small |
IVTD | aNDF | NDFD | ADF | ADL | CP | |
---|---|---|---|---|---|---|
Unit | %DM | |||||
Count | 600 | |||||
Mean | 79.22 | 50.13 | 58.84 | 37.18 | 7.35 | 17.62 |
SD | 7.31 | 10.42 | 9.39 | 5.80 | 2.18 | 4.43 |
Min | 38.13 | 28.81 | 11.40 | 24.22 | 3.12 | 6.12 |
Median | 80.73 | 48.75 | 58.50 | 36.50 | 7.06 | 18.04 |
Max | 92.92 | 81.60 | 80.87 | 59.06 | 20.60 | 27.72 |
Instrument | Mode | Variable | RMSE | Bias | SE | SECV | R2 | RPD | RPDCV | LVs | |
---|---|---|---|---|---|---|---|---|---|---|---|
AgroCares | Static | ADF | 2.754 | 0.000 | 2.756 | 3.379 | 0.771 | 0.655 | 2.090 | 1.703 | 10 |
Moving | ADF | 1.959 | 0.000 | 1.961 | 2.608 | 0.884 | 0.795 | 2.937 | 2.208 | 15 | |
NEOSpectra | Static | ADF | 2.463 | 0.000 | 2.465 | 2.885 | 0.817 | 0.749 | 2.336 | 1.996 | 12 |
Moving | ADF | 2.122 | 0.000 | 2.124 | 2.544 | 0.864 | 0.805 | 2.711 | 2.264 | 20 | |
Turntable | ADF | 1.861 | 0.000 | 1.862 | 2.198 | 0.895 | 0.854 | 3.093 | 2.620 | 19 | |
Trinamix | Static | ADF | 2.261 | 0.000 | 2.263 | 2.662 | 0.846 | 0.786 | 2.545 | 2.163 | 13 |
AgroCares | Static | ADL | 1.365 | 0.000 | 1.367 | 1.674 | 0.591 | 0.386 | 1.564 | 1.277 | 11 |
Moving | ADL | 1.293 | 0.000 | 1.294 | 1.559 | 0.633 | 0.468 | 1.651 | 1.371 | 10 | |
NEOSpectra | Static | ADL | 1.369 | 0.000 | 1.371 | 1.592 | 0.589 | 0.445 | 1.559 | 1.342 | 11 |
Moving | ADL | 1.242 | 0.000 | 1.244 | 1.460 | 0.661 | 0.533 | 1.718 | 1.464 | 18 | |
Turntable | ADL | 1.175 | 0.000 | 1.176 | 1.450 | 0.697 | 0.539 | 1.817 | 1.473 | 20 | |
Trinamix | Static | ADL | 1.405 | 0.000 | 1.406 | 1.608 | 0.567 | 0.434 | 1.520 | 1.329 | 10 |
AgroCares | Static | CP | 2.010 | 0.000 | 2.012 | 2.306 | 0.792 | 0.727 | 2.195 | 1.915 | 9 |
Moving | CP | 1.670 | 0.000 | 1.672 | 1.872 | 0.857 | 0.820 | 2.641 | 2.358 | 8 | |
NEOSpectra | Static | CP | 1.843 | 0.000 | 1.845 | 2.140 | 0.825 | 0.765 | 2.393 | 2.063 | 11 |
Moving | CP | 1.513 | 0.000 | 1.514 | 1.799 | 0.882 | 0.834 | 2.916 | 2.454 | 20 | |
Turntable | CP | 1.328 | 0.000 | 1.329 | 1.601 | 0.909 | 0.869 | 3.322 | 2.758 | 20 | |
Trinamix | Static | CP | 1.643 | 0.000 | 1.645 | 1.900 | 0.861 | 0.815 | 2.684 | 2.324 | 12 |
AgroCares | Static | IVTD | 4.279 | 0.000 | 4.283 | 5.016 | 0.660 | 0.533 | 1.714 | 1.463 | 9 |
Moving | IVTD | 3.465 | 0.000 | 3.469 | 4.177 | 0.777 | 0.677 | 2.117 | 1.758 | 10 | |
NEOSpectra | Static | IVTD | 4.114 | 0.000 | 4.118 | 4.632 | 0.686 | 0.602 | 1.783 | 1.585 | 10 |
Moving | IVTD | 3.665 | 0.000 | 3.668 | 4.455 | 0.750 | 0.632 | 2.002 | 1.648 | 19 | |
Turntable | IVTD | 3.409 | 0.000 | 3.412 | 4.195 | 0.784 | 0.674 | 2.152 | 1.750 | 20 | |
Trinamix | Static | IVTD | 3.757 | 0.000 | 3.760 | 4.372 | 0.738 | 0.645 | 1.953 | 1.679 | 12 |
AgroCares | Static | NDFD | 6.534 | 0.000 | 6.540 | 7.744 | 0.524 | 0.333 | 1.450 | 1.224 | 10 |
Moving | NDFD | 5.653 | 0.000 | 5.658 | 6.862 | 0.644 | 0.476 | 1.676 | 1.382 | 10 | |
NEOSpectra | Static | NDFD | 6.317 | 0.000 | 6.323 | 7.173 | 0.555 | 0.428 | 1.500 | 1.322 | 11 |
Moving | NDFD | 5.730 | 0.000 | 5.735 | 6.980 | 0.634 | 0.458 | 1.653 | 1.358 | 19 | |
Turntable | NDFD | 5.485 | 0.000 | 5.490 | 6.508 | 0.665 | 0.529 | 1.727 | 1.457 | 19 | |
Trinamix | Static | NDFD | 5.390 | 0.000 | 5.395 | 7.081 | 0.676 | 0.442 | 1.757 | 1.339 | 20 |
AgroCares | Static | aNDF | 3.811 | 0.000 | 3.814 | 4.370 | 0.863 | 0.820 | 2.700 | 2.356 | 10 |
Moving | aNDF | 3.256 | 0.000 | 3.259 | 3.829 | 0.900 | 0.862 | 3.159 | 2.689 | 8 | |
NEOSpectra | Static | aNDF | 3.243 | 0.000 | 3.246 | 3.752 | 0.901 | 0.867 | 3.172 | 2.744 | 15 |
Moving | aNDF | 3.007 | 0.000 | 3.010 | 3.573 | 0.915 | 0.880 | 3.421 | 2.881 | 20 | |
Turntable | aNDF | 2.605 | 0.000 | 2.608 | 3.031 | 0.936 | 0.913 | 3.949 | 3.397 | 20 | |
Trinamix | Static | aNDF | 2.905 | 0.000 | 2.908 | 3.828 | 0.920 | 0.862 | 3.541 | 2.689 | 20 |
Instrument | Mode | Variable | RMSE | Bias | SE | R2 | Slope | Intercept | RPD |
---|---|---|---|---|---|---|---|---|---|
AgroCares | Static | ADF | 2.949 | −0.150 | 2.970 | 0.761 | 0.973 | 1.191 | 2.047 |
Moving | ADF | 3.015 | −0.654 | 2.968 | 0.751 | 0.928 | 3.386 | 2.003 | |
NEOSpectra | Static | ADF | 2.490 | −0.203 | 2.502 | 0.830 | 1.026 | −0.805 | 2.425 |
Moving | ADF | 2.283 | −0.446 | 2.258 | 0.857 | 0.923 | 3.374 | 2.645 | |
Turntable | ADF | 2.207 | −0.193 | 2.217 | 0.866 | 0.946 | 2.269 | 2.736 | |
Trinamix | Static | ADF | 2.536 | −0.332 | 2.536 | 0.824 | 1.090 | −3.124 | 2.381 |
AgroCares | Static | ADL | 2.400 | −0.040 | 2.420 | 0.109 | 0.644 | 2.705 | 1.059 |
Moving | ADL | 2.247 | −0.251 | 2.252 | 0.219 | 0.835 | 1.450 | 1.132 | |
NEOSpectra | Static | ADL | 2.050 | −0.079 | 2.066 | 0.350 | 0.963 | 0.356 | 1.240 |
Moving | ADL | 2.013 | −0.321 | 2.004 | 0.373 | 1.018 | 0.194 | 1.263 | |
Turntable | ADL | 1.794 | −0.178 | 1.800 | 0.502 | 1.040 | −0.115 | 1.417 | |
Trinamix | Static | ADL | 1.961 | −0.307 | 1.953 | 0.405 | 1.257 | −1.550 | 1.297 |
AgroCares | Static | CP | 2.003 | 0.356 | 1.988 | 0.783 | 0.893 | 1.408 | 2.144 |
Moving | CP | 1.729 | 0.329 | 1.712 | 0.838 | 0.937 | 0.700 | 2.484 | |
NEOSpectra | Static | CP | 1.977 | 0.333 | 1.965 | 0.788 | 0.997 | −0.288 | 2.172 |
Moving | CP | 1.412 | 0.074 | 1.422 | 0.892 | 0.986 | 0.150 | 3.042 | |
Turntable | CP | 1.517 | 0.140 | 1.524 | 0.875 | 0.935 | 0.911 | 2.831 | |
Trinamix | Static | CP | 1.712 | 0.101 | 1.723 | 0.841 | 0.925 | 1.112 | 2.509 |
AgroCares | Static | IVTD | 4.558 | −0.709 | 4.540 | 0.577 | 0.862 | 11.412 | 1.537 |
Moving | IVTD | 4.141 | 0.010 | 4.176 | 0.651 | 0.857 | 11.125 | 1.692 | |
NEOSpectra | Static | IVTD | 4.040 | −0.315 | 4.061 | 0.668 | 0.911 | 7.270 | 1.735 |
Moving | IVTD | 3.549 | −0.262 | 3.570 | 0.743 | 0.927 | 5.942 | 1.974 | |
Turntable | IVTD | 3.550 | −0.277 | 3.569 | 0.743 | 0.854 | 11.650 | 1.974 | |
Trinamix | Static | IVTD | 4.142 | −0.180 | 4.173 | 0.651 | 0.912 | 7.068 | 1.692 |
AgroCares | Static | NDFD | 8.355 | −1.046 | 8.360 | −0.019 | 0.497 | 30.314 | 0.991 |
Moving | NDFD | 7.406 | −0.232 | 7.465 | 0.200 | 0.645 | 21.191 | 1.118 | |
NEOSpectra | Static | NDFD | 6.515 | −0.590 | 6.543 | 0.381 | 0.838 | 10.082 | 1.271 |
Moving | NDFD | 5.943 | −0.164 | 5.991 | 0.485 | 0.952 | 3.016 | 1.393 | |
Turntable | NDFD | 5.544 | −0.348 | 5.579 | 0.552 | 0.816 | 11.202 | 1.493 | |
Trinamix | Static | NDFD | 7.295 | −0.515 | 7.338 | 0.223 | 0.649 | 21.140 | 1.135 |
AgroCares | Static | aNDF | 4.380 | −0.501 | 4.388 | 0.841 | 1.018 | −0.462 | 2.506 |
Moving | aNDF | 3.808 | −0.865 | 3.739 | 0.880 | 1.020 | −0.186 | 2.883 | |
NEOSpectra | Static | aNDF | 3.832 | −0.713 | 3.797 | 0.878 | 1.050 | −1.935 | 2.864 |
Moving | aNDF | 3.494 | −0.174 | 3.519 | 0.899 | 0.991 | 0.666 | 3.141 | |
Turntable | aNDF | 3.304 | −0.404 | 3.307 | 0.909 | 0.991 | 0.872 | 3.322 | |
Trinamix | Static | aNDF | 3.180 | 0.189 | 3.201 | 0.916 | 1.010 | −0.705 | 3.452 |
Variable | RMSE | SE | R2 | RPD | Success | Classification | ||
---|---|---|---|---|---|---|---|---|
Instrument | Mode | ( [23]) | (RPD [24]) | |||||
NEOSpectra | Moving | CP | 1.412 | 1.422 | 0.892 | 3.042 | Moderately Successful | Good |
Moving | IVTD | 3.549 | 3.570 | 0.743 | 1.974 | Not Useful | Very poor | |
Turntable | ADF | 2.207 | 2.217 | 0.866 | 2.736 | Moderately Successful | Fair | |
Turntable | ADL | 1.794 | 1.800 | 0.502 | 1.417 | Not Useful | Very poor | |
Turntable | NDFD | 5.544 | 5.579 | 0.552 | 1.493 | Not Useful | Very poor | |
Trinamix | Static | aNDF | 3.180 | 3.201 | 0.916 | 3.452 | Successful | Very good |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamada, W.; Cherney, J.; Cherney, D.; Runge, T.; Digman, M. Handheld Near-Infrared Spectroscopy for Undried Forage Quality Estimation. Sensors 2024, 24, 5136. https://doi.org/10.3390/s24165136
Yamada W, Cherney J, Cherney D, Runge T, Digman M. Handheld Near-Infrared Spectroscopy for Undried Forage Quality Estimation. Sensors. 2024; 24(16):5136. https://doi.org/10.3390/s24165136
Chicago/Turabian StyleYamada, William, Jerry Cherney, Debbie Cherney, Troy Runge, and Matthew Digman. 2024. "Handheld Near-Infrared Spectroscopy for Undried Forage Quality Estimation" Sensors 24, no. 16: 5136. https://doi.org/10.3390/s24165136
APA StyleYamada, W., Cherney, J., Cherney, D., Runge, T., & Digman, M. (2024). Handheld Near-Infrared Spectroscopy for Undried Forage Quality Estimation. Sensors, 24(16), 5136. https://doi.org/10.3390/s24165136