Performance Evaluation of UOWC Systems from an Empirical Channel Model Approach for Air Bubble-Induced Scattering
Abstract
:1. Introduction
2. System and Channel Models
2.1. System Model
2.2. Air Bubble-Induced Fading Model
3. Performance Analysis of UOWC Links under Air Bubble-Induced Fading
3.1. Bit Error Rate Analysis
3.2. Outage Probability Analysis
3.3. Diversity Order Analysis
4. Numerical Results and Discussion
4.1. Diversity Order Performance
4.2. Small Air Bubble Scenario
4.3. Large Air Bubble Scenario
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AUV | Autonomous Underwater Vehicles |
BER | Bit Error Rate |
CDF | Cumulative Distribution Function |
IM/DD | Intensity Modulation/Direct Detection |
OOK | On-Off Keying |
Probability Density Function | |
SISO | Single-Input/Single-Output |
SNR | Signal-to-Noise Ratio |
UOWC | Underwater Optical Wireless Communications |
References
- Stojanovic, M. Underwater wireless communications: Current achievements and research challenges. IEEE Ocean. Eng. Soc. Newsl. 2006, 41, 1–5. [Google Scholar]
- Sun, X.; Kang, C.H.; Kong, M.; Alkhazragi, O.; Guo, Y.; Ouhssain, M.; Weng, Y.; Jones, B.H.; Ng, T.K.; Ooi, B.S. A Review on Practical Considerations and Solutions in Underwater Wireless Optical Communication. J. Light. Technol. 2020, 38, 421–431. [Google Scholar] [CrossRef]
- Zeng, Z.; Fu, S.; Zhang, H.; Dong, Y.; Cheng, J. A Survey of Underwater Optical Wireless Communications. IEEE Commun. Surv. Tutorials 2017, 19, 204–238. [Google Scholar] [CrossRef]
- Gabriel, C.; Khalighi, M.A.; Bourennane, S.; Léon, P.; Rigaud, V. Monte-Carlo-based channel characterization for underwater optical communication systems. J. Opt. Commun. Netw. 2013, 5, 1–12. [Google Scholar] [CrossRef]
- Oubei, H.M.; Zedini, E.; ElAfandy, R.T.; Kammoun, A.; Abdallah, M.; Ng, T.K.; Hamdi, M.; Alouini, M.S.; Ooi, B.S. Simple statistical channel model for weak temperature-induced turbulence in underwater wireless optical communication systems. Opt. Lett. 2017, 42, 2455–2458. [Google Scholar] [CrossRef] [PubMed]
- Oubei, H.M.; ElAfandy, R.T.; Park, K.H.; Ng, T.K.; Alouini, M.S.; Ooi, B.S. Performance Evaluation of Underwater Wireless Optical Communications Links in the Presence of Different Air Bubble Populations. IEEE Photonics J. 2017, 9, 1–9. [Google Scholar] [CrossRef]
- Jamali, M.V.; Mirani, A.; Parsay, A.; Abolhassani, B.; Nabavi, P.; Chizari, A.; Khorramshahi, P.; Abdollahramezani, S.; Salehi, J.A. Statistical Studies of Fading in Underwater Wireless Optical Channels in the Presence of Air Bubble, Temperature, and Salinity Random Variations. IEEE Trans. Commun. 2018, 66, 4706–4723. [Google Scholar] [CrossRef]
- Zedini, E.; Oubei, H.M.; Kammoun, A.; Hamdi, M.; Ooi, B.S.; Alouini, M.S. Unified statistical channel model for turbulence-induced fading in underwater wireless optical communication systems. IEEE Trans. Commun. 2019, 67, 2893–2907. [Google Scholar] [CrossRef]
- Yousefi, M.; Kashani, F.D.; Aghajani, A.; Rad, M.R.H. Experimental study of the effects of thermally induced optical turbulence on underwater wireless optical communication link parameters. J. Opt. 2020, 22, 025702. [Google Scholar] [CrossRef]
- Ke, X.; Bao, J.; Liang, J. Experimental study of underwater wireless optical channel model. Opt. Eng. 2023, 62, 124103. [Google Scholar] [CrossRef]
- Qiu, H.; Huang, Z.; Xu, J.; Zhai, W.; Gao, Y.; Ji, Y. Unified statistical thermocline channel model for underwater wireless optical communication. Opt. Lett. 2023, 48, 636–639. [Google Scholar] [CrossRef] [PubMed]
- Boluda-Ruiz, R.; García-Zambrana, A.; Castillo-Vázquez, B.; Hranilovic, S. Impact of angular pointing error on BER performance of underwater optical wireless links. Opt. Express 2020, 28, 34606–34622. [Google Scholar] [CrossRef] [PubMed]
- Boluda-Ruiz, R.; Salcedo-Serrano, P.; Castillo-Vázquez, B.; García-Zambrana, A.; Garrido-Balsells, J.M. Capacity of underwater optical wireless communication systems over salinity-induced oceanic turbulence channels with ISI. Opt. Express 2021, 29, 23142–23158. [Google Scholar] [CrossRef] [PubMed]
- Samir, A.; Elsayed, M.; El-Banna, A.A.A.; Shafique Ansari, I.; Rabie, K.; ElHalawany, B.M. Performance Analysis of Dual-Hop Hybrid RF-UOWC NOMA Systems. Sensors 2022, 22, 4521. [Google Scholar] [CrossRef] [PubMed]
- Rahman, Z.; Hassan, M.Z.; Kaddoum, G. Ergodic Capacity Optimization for RSMA-Based UOWC Systems Over EGG Turbulence Channel. IEEE Commun. Lett. 2024, 28, 587–591. [Google Scholar] [CrossRef]
- Ding, G.; Du, X.; Du, H.; Wang, S.; Feng, H.; Xu, G.; Xiong, Z.; Jia, Z.; Li, Y. Performance analysis of OSSK-UWOC systems considering pointing errors and channel estimation errors. Opt. Express 2024, 32, 3606–3618. [Google Scholar] [CrossRef] [PubMed]
- Weng, Y.; Guo, Y.; Alkhazragi, O.; Ng, T.K.; Guo, J.H.; Ooi, B.S. Impact of turbulent-flow-induced scintillation on deep-ocean wireless optical communication. J. Light. Technol. 2019, 37, 5083–5090. [Google Scholar] [CrossRef]
- Vahaji, S.; Chen, L.; Cheung, S.C.; Tu, J. Numerical investigation on bubble size distribution around an underwater vehicle. Appl. Ocean. Res. 2018, 78, 254–266. [Google Scholar] [CrossRef]
- Waaland, J.R.; Branton, D. Gas vacuole development in a blue-green alga. Science 1969, 163, 1339–1341. [Google Scholar] [CrossRef]
- Chen, D.; Wang, J.; Li, S.; Xu, Z. Effects of air bubbles on underwater optical wireless communication. Invited. Chin. Opt. Lett. 2019, 17, 100008. [Google Scholar] [CrossRef]
- Shin, M.; Park, K.H.; Alouini, M.S. Statistical Modeling of the Impact of Underwater Bubbles on an Optical Wireless Channel. IEEE Open J. Commun. Soc. 2020, 1, 808–818. [Google Scholar] [CrossRef]
- Salcedo-Serrano, P.; Gómez-García, C.; Iamaguti-Debessa, J.; Boluda-Ruiz, R.; Garrido-Balsells, J.M.; Castillo-Vázquez, B.; Puerta-Notario, A.; García-Zambrana, A. On the effect of air bubbles-induced scattering on turbid waters: An experimental UOWC channel modeling approach. IEEE Access 2024, 12, 75888–75898. [Google Scholar] [CrossRef]
- Aalo, V.A.; Piboongungon, T.; Iskander, C.D. Bit-error rate of binary digital modulation schemes in generalized gamma fading channels. IEEE Commun. Lett. 2005, 9, 139–141. [Google Scholar] [CrossRef]
- AlQuwaiee, H.; Ansari, I.S.; Alouini, M.S. On the performance of free-space optical communication systems over double generalized gamma channel. IEEE J. Sel. Areas Commun. 2015, 33, 1829–1840. [Google Scholar] [CrossRef]
- Le-Tran, M.; Kim, S. Performance analysis of multi-hop underwater wireless optical communication systems over exponential-generalized gamma turbulence channels. IEEE Trans. Veh. Technol. 2022, 71, 6214–6227. [Google Scholar] [CrossRef]
- Barry, J.R. Wireless Infrared Communications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1994; Volume 280. [Google Scholar]
- Zedini, E.; Kammoun, A.; Soury, H.; Hamdi, M.; Alouini, M.S. Performance analysis of dual-hop underwater wireless optical communication systems over mixture exponential-generalized gamma turbulence channels. IEEE Trans. Commun. 2020, 68, 5718–5731. [Google Scholar] [CrossRef]
- Stacy, E.W. A Generalization of the Gamma Distribution. Ann. Math. Stat. 1962, 33, 1187–1192. [Google Scholar] [CrossRef]
- Goldsmith, A. Wireless Communications; Cambridge University: Cambridge, UK, 2005. [Google Scholar]
- Wolfram Research, Inc. The Wolfram Functions Site. Available online: https://functions.wolfram.com/ (accessed on 1 July 2024).
- Kilbas, A.A. H-Transforms: Theory and Applications; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Wang, Z.; Giannakis, G.B. A simple and general parameterization quantifying performance in fading channels. IEEE Trans. Commun. 2003, 51, 1389–1398. [Google Scholar] [CrossRef]
- Chaudhry, M.A.; Zubair, S.M. On a Class of Incomplete Gamma Functions with Applications; Chapman and Hall/CRC: Boca Raton, FL, USA, 2001. [Google Scholar]
- Jeruchim, M.C.; Balaban, P.; Shanmugan, K.S.; Jeruchim, M.C.; Balaban, P.; Shanmugan, K.S. Modeling of Communication Systems. In Simulation of Communication Systems. Applications of Communications Theory; Springer: Boston, MA, USA, 1992; pp. 303–462. [Google Scholar]
- Williamson, C.A.; Hollins, R.C. Measured IOPs of Jerlov water types. Appl. Opt. 2022, 61, 9951–9961. [Google Scholar] [CrossRef]
Antacid [mg/L] | [dB] | c [] | |||
---|---|---|---|---|---|
0 | (1.73, 1.43, 7.95) | 6.8 | 0.16 | 0.22 | 0.99 |
3.6 | (1.72, 1.44, 6.28) | 11.7 | 0.54 | 0.23 | 0.99 |
7.3 | (1.59, 1.68, 4) | 14.7 | 0.77 | 0.19 | 0.98 |
11 | (1.19, 2.75, 3.05) | 17.4 | 0.98 | 0.14 | 0.99 |
14.5 | (0.79, 5.09, 2.41) | 20.9 | 1.24 | 0.09 | 0.98 |
Antacid [mg/L] | w | [dB] | c [] | ||||
---|---|---|---|---|---|---|---|
0 | (0.028, 2, 1.2) | (1.38, 29.38, 22.7) | 0.2 | 5.0 | 0.16 | 0.32 | 0.95 |
3.6 | (0.05, 1.110, 0.85) | (1.38, 13.95, 12.8) | 0.23 | 9.9 | 0.54 | 0.30 | 0.98 |
7.3 | (0.06, 1.320, 0.85) | (1.39, 11.93, 11.7) | 0.23 | 12.9 | 0.77 | 0.29 | 0.98 |
11 | (0.047, 3.77, 1.060) | (1.36, 10.87, 10.55) | 0.26 | 15.6 | 0.98 | 0.27 | 0.98 |
14.5 | (0.037, 7.28, 0.98) | (1.33, 10.87, 10.2) | 0.25 | 19.1 | 1.24 | 0.21 | 0.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salcedo-Serrano, P.; Boluda-Ruiz, R.; Garrido-Balsells, J.M.; Castillo-Vázquez, B.; Puerta-Notario, A.; García-Zambrana, A. Performance Evaluation of UOWC Systems from an Empirical Channel Model Approach for Air Bubble-Induced Scattering. Sensors 2024, 24, 5232. https://doi.org/10.3390/s24165232
Salcedo-Serrano P, Boluda-Ruiz R, Garrido-Balsells JM, Castillo-Vázquez B, Puerta-Notario A, García-Zambrana A. Performance Evaluation of UOWC Systems from an Empirical Channel Model Approach for Air Bubble-Induced Scattering. Sensors. 2024; 24(16):5232. https://doi.org/10.3390/s24165232
Chicago/Turabian StyleSalcedo-Serrano, Pedro, Rubén Boluda-Ruiz, José María Garrido-Balsells, Beatriz Castillo-Vázquez, Antonio Puerta-Notario, and Antonio García-Zambrana. 2024. "Performance Evaluation of UOWC Systems from an Empirical Channel Model Approach for Air Bubble-Induced Scattering" Sensors 24, no. 16: 5232. https://doi.org/10.3390/s24165232
APA StyleSalcedo-Serrano, P., Boluda-Ruiz, R., Garrido-Balsells, J. M., Castillo-Vázquez, B., Puerta-Notario, A., & García-Zambrana, A. (2024). Performance Evaluation of UOWC Systems from an Empirical Channel Model Approach for Air Bubble-Induced Scattering. Sensors, 24(16), 5232. https://doi.org/10.3390/s24165232