Deep Reinforcement Learning-Based Adaptive Scheduling for Wireless Time-Sensitive Networking
Abstract
:1. Introduction
- 1.
- To apply the TAS functionality of TSN to IEEE 802.11-based wireless networks, we design a WTSN network model. In this model, wireless stations can receive exclusive periods from the AP to transmit TS streams. We present potential delay issues caused by changing wireless channel conditions and outline the problem scenarios that the scheduler needs to address.
- 2.
- We propose WISE, a deep reinforcement learning (DRL)-based WTSN scheduler that adapts to changes in wireless channel conditions and meets the latency requirements of TS streams. Our DRL framework is designed to learn and adapt to these changing conditions while also learning repetitive stream patterns to satisfy latency requirements in the WTSN model. By comparing variants of WISE, we identify the most suitable DRL model for solving the given problem.
- 3.
- Through a comparative evaluation of non-ML schedulers and WISE variants in terms of latency and algorithm processing time, we validate the effectiveness of the proposed WISE and analyze the factors contributing to its performance. Our findings indicate that WISE is the only scheduler that consistently meets the 99.9% latency satisfaction requirement in all scenarios. This achievement, within an acceptable processing time of approximately 95 ms in the evaluated WTSN network environment, is significant compared to the ILP algorithm’s processing time of 3.3 s.
2. Related Works
2.1. TSN in Wireless Networks
2.2. Scheduling Time-Sensitive Streams in IEEE 802.11 Networks
3. WTSN Network Model and Problems
3.1. WTSN Network Model
3.2. Problems in WTSN Network
- Variables
- : start time of the j-th frame transmission in the i-th stream from node k.
- : end time of the j-th frame transmission in the i-th stream from node k.
- : time when the j-th frame of the i-th stream from node k enters the queue.
- : binary variable indicating whether slot is allocated to node k (1 if allocated, 0 otherwise).
- : binary variable indicating whether the j-th frame of the i-th stream from node k meets the deadline (1 if met, 0 otherwise).
- Objective Function
- Constraints
4. WTSN Intelligent Scheduler
- , representing the current MCS index for N nodes at time t, where each is the MCS index for the node k.
- , detailing the allocations for the next i steps, where each pair consists of the node ID and the number of frames that node is scheduled to transmit in the -th step.
- , where each records the number of frames transmitted by each of the N nodes at time , reflecting the transmission history over the past i steps.
- represents the reward at step t.
- N is the number of nodes in the system.
- represents the set of frames in the queue of node i.
- is the size of frame j.
- is the time when frame j entered the queue.
- is the maximum allowed latency of frame j.
- is a weight function that adjusts the penalty based on the size of the frame, e.g., .
Algorithm 1 PPO-based Wireless TSN Intelligent Scheduler |
|
5. Evaluation
5.1. Evaluation Scenarios and Simulation Setup
5.2. Evaluation of Latency Requirement Satisfaction Rate
5.3. Comparative Evaluation of Latency ECDF
5.3.1. Evaluation Results in Scenario 1
5.3.2. Evaluation Results in Scenario 2
5.3.3. Evaluation Results in Scenario 3
5.4. Evaluation of Processing Time
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kang, Y.; Lee, S.; Gwak, S.; Kim, T.; An, D. Time-sensitive networking technologies for industrial automation in wireless communication systems. Energies 2021, 14, 4497. [Google Scholar] [CrossRef]
- Lu, Y.; Zhao, G.; Chakraborty, C.; Xu, C.; Yang, L.; Yu, K. Time sensitive networking-driven deterministic low-latency communication for real-time telemedicine and e-health services. IEEE Trans. Consum. Electron. 2023, 69, 734–744. [Google Scholar] [CrossRef]
- Hazarika, A.; Rahmati, M. Towards an evolved immersive experience: Exploring 5G-and beyond-enabled ultra-low-latency communications for augmented and virtual reality. Sensors 2023, 23, 3682. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Shi, B.; Jiang, T.; Tu, X.; Xu, D.; Hua, K. A survey on in-vehicle time sensitive networking. IEEE Internet Things J. 2023, 10, 14375–14396. [Google Scholar] [CrossRef]
- Fedullo, T.; Morato, A.; Tramarin, F.; Rovati, L.; Vitturi, S. A comprehensive review on time sensitive networks with a special focus on its applicability to industrial smart and distributed measurement systems. Sensors 2022, 22, 1638. [Google Scholar] [CrossRef] [PubMed]
- Silvestre-Blanes, J.; Almeida, L.; Marau, R.; Pedreiras, P. Online QoS management for multimedia real-time transmission in industrial networks. IEEE Trans. Ind. Electron. 2010, 58, 1061–1071. [Google Scholar] [CrossRef]
- Farkas, J.; Bello, L.L.; Gunther, C. Time-sensitive networking standards. IEEE Commun. Stand. Mag. 2018, 2, 20–21. [Google Scholar] [CrossRef]
- Stüber, T.; Osswald, L.; Lindner, S.; Menth, M. A survey of scheduling algorithms for the time-aware shaper in time-sensitive networking (TSN). IEEE Access 2023, 11, 61192–61233. [Google Scholar] [CrossRef]
- Seijo, Ó.; Val, I.; Luvisotto, M.; Pang, Z. Clock synchronization for wireless time-sensitive networking: A march from microsecond to nanosecond. IEEE Ind. Electron. Mag. 2021, 16, 35–43. [Google Scholar] [CrossRef]
- Sudhakaran, S.; Montgomery, K.; Kashef, M.; Cavalcanti, D.; Candell, R. Wireless time sensitive networking impact on an industrial collaborative robotic workcell. IEEE Trans. Ind. Inform. 2022, 18, 7351–7360. [Google Scholar] [CrossRef]
- Bush, S.F.; Mantelet, G.; Thomsen, B.; Grossman, E. Industrial Wireless Time-Sensitive Networking: RFC on the Path Forward; Avnu Alliance White Paper; Avnu Alliance: Beaverton, OR, USA, 2018. [Google Scholar]
- Atiq, M.K.; Muzaffar, R.; Seijo, Ó.; Val, I.; Bernhard, H.P. When IEEE 802.11 and 5G meet time-sensitive networking. IEEE Open J. Ind. Electron. Soc. 2021, 3, 14–36. [Google Scholar] [CrossRef]
- Cavalcanti, D.; Cordeiro, C.; Smith, M.; Regev, A. WiFi TSN: Enabling deterministic wireless connectivity over 802.11. IEEE Commun. Stand. Mag. 2022, 6, 22–29. [Google Scholar] [CrossRef]
- Haxhibeqiri, J.; Jiao, X.; Aslam, M.; Moerman, I.; Hoebeke, J. Enabling TSN over IEEE 802.11: Low-overhead time synchronization for Wi-Fi clients. In Proceedings of the 2021 22nd IEEE International Conference on Industrial Technology (ICIT), Virtual, 10–12 March 2021; Volume 1, pp. 1068–1073. [Google Scholar]
- Alnazir, A.; Mokhtar, R.A.; Alhumyani, H.; Ali, E.S.; Saeed, R.A.; Abdel-Khalek, S. Quality of services based on intelligent IoT WLAN MAC protocol dynamic real-time applications in smart cities. Comput. Intell. Neurosci. 2021, 2021, 2287531. [Google Scholar] [CrossRef]
- Chen, C.; Chen, X.; Das, D.; Akhmetov, D.; Cordeiro, C. Overview and performance evaluation of Wi-Fi 7. IEEE Commun. Stand. Mag. 2022, 6, 12–18. [Google Scholar] [CrossRef]
- Yin, W.; Hu, P.; Indulska, J.; Portmann, M.; Mao, Y. MAC-layer rate control for 802.11 networks: A survey. Wirel. Netw. 2020, 26, 3793–3830. [Google Scholar] [CrossRef]
- Jin, X.; Xia, C.; Guan, N.; Xu, C.; Li, D.; Yin, Y.; Zeng, P. Real-time scheduling of massive data in time sensitive networks with a limited number of schedule entries. IEEE Access 2020, 8, 6751–6767. [Google Scholar] [CrossRef]
- Stüber, T.; Eppler, M.; Osswald, L.; Menth, M. Performance Comparison of Offline Scheduling Algorithms for the Time-Aware Shaper (TAS). IEEE Trans. Ind. Inform. 2024, 20, 9736–9748. [Google Scholar] [CrossRef]
- Arulkumaran, K.; Deisenroth, M.P.; Brundage, M.; Bharath, A.A. Deep reinforcement learning: A brief survey. IEEE Signal Process. Mag. 2017, 34, 26–38. [Google Scholar] [CrossRef]
- Avila-Campos, P.; Haxhibeqiri, J.; Jiao, X.; Van Herbruggen, B.; Moerman, I.; Hoebeke, J. Unlocking Mobility for Wi-Fi-based Wireless Time-Sensitive Networks. IEEE Access 2024, 12, 30687–30699. [Google Scholar] [CrossRef]
- Jayabal, R.J.; Wong, D.T.C.; Goh, L.K.; Pang, C.M.; Sun, S.; Jin, B.; Ma, Y.; Goh, L.M.; Cheng, W.C. TGT-HC: A time-aware shaper scheduled hyperchannel protocol for wireless time sensitive networks (TSNs). In Proceedings of the 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall), Virtual, 27 September–28 October 2021; pp. 1–6. [Google Scholar]
- Fang, J.; Sudhakaran, S.; Cavalcanti, D.; Cordeiro, C.; Chen, C. Wireless TSN with multi-radio wi-fi. In Proceedings of the 2021 IEEE Conference on Standards for Communications and Networking (CSCN), Virtual, 15–17 December 2021; pp. 105–110. [Google Scholar]
- Khoshnevisan, M.; Joseph, V.; Gupta, P.; Meshkati, F.; Prakash, R.; Tinnakornsrisuphap, P. 5G industrial networks with CoMP for URLLC and time sensitive network architecture. IEEE J. Sel. Areas Commun. 2019, 37, 947–959. [Google Scholar] [CrossRef]
- Shrestha, D.; Pang, Z.; Dzung, D. Precise clock synchronization in high performance wireless communication for time sensitive networking. IEEE Access 2018, 6, 8944–8953. [Google Scholar] [CrossRef]
- Avallone, S.; Imputato, P.; Magrin, D. Controlled channel access for IEEE 802.11-based wireless tsn networks. IEEE Internet Things Mag. 2023, 6, 90–95. [Google Scholar] [CrossRef]
- Peón, P.G.; Karachatzis, P.; Steiner, W.; Uhlemann, E. Time-Sensitive Networking’s Scheduled Traffic Implementation on IEEE 802.11 COTS Devices. In Proceedings of the 2023 IEEE 29th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), Niigata, Japan, 30 August–1 September 2023; pp. 167–175. [Google Scholar]
- Schneider, B.; Sofia, R.C.; Kovatsch, M. A proposal for time-aware scheduling in wireless industrial iot environments. In Proceedings of the NOMS 2022—2022 IEEE/IFIP Network Operations and Management Symposium, Budapest, Hungary, 25–29 April 2022; pp. 1–6. [Google Scholar]
- Li, Z.; Yang, J.; Guo, C.; Xiao, J.; Tao, T.; Li, C. A Joint Scheduling Scheme for WiFi Access TSN. Sensors 2024, 24, 2554. [Google Scholar] [CrossRef] [PubMed]
- Tan, Q.; He, J.; Gao, Y. Deep Reinforcement Learning based OFDMA Scheduling for WiFi Networks with Coexisting Latency-Sensitive and High-Throughput Services. In Proceedings of the 2024 5th Information Communication Technologies Conference (ICTC), Nanjing, China, 10–12 May 2024; pp. 146–150. [Google Scholar] [CrossRef]
- Adame, T.; Carrascosa-Zamacois, M.; Bellalta, B. Time-sensitive networking in IEEE 802.11 be: On the way to low-latency WiFi 7. Sensors 2021, 21, 4954. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Zhu, Y.H. Scheduling channel access based on target wake time mechanism in 802.11 ax WLANs. IEEE Trans. Wirel. Commun. 2020, 20, 1529–1543. [Google Scholar] [CrossRef]
- Sangdeh, P.K.; Zeng, H. DeepMux: Deep-learning-based channel sounding and resource allocation for IEEE 802.11 ax. IEEE J. Sel. Areas Commun. 2021, 39, 2333–2346. [Google Scholar] [CrossRef]
- Han, M.; Sun, X.; Zhan, W.; Gao, Y.; Jiang, Y. Multi-Agent Reinforcement Learning based Uplink OFDMA for IEEE 802.11ax Networks. IEEE Trans. Wirel. Commun. 2024, 23, 8868–8882. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Zheng, K.; Liu, J. AoI minimization of ambient backscatter-assisted EH-CRN with cooperative spectrum sensing. Comput. Netw. 2024, 245, 110389. [Google Scholar] [CrossRef]
- Kong, W.; Nabi, M.; Goossens, K. Run-time recovery and failure analysis of time-triggered traffic in time sensitive networks. IEEE Access 2021, 9, 91710–91722. [Google Scholar] [CrossRef]
- Akram, B.O.; Noordin, N.K.; Hashim, F.; Rasid, M.F.A.; Salman, M.I.; Abdulghani, A.M. Joint Scheduling and Routing Optimization for Deterministic Hybrid Traffic in Time-Sensitive Networks using Constraint Programming. IEEE Access 2023, 11, 142764–142779. [Google Scholar] [CrossRef]
- Bello, L.L.; Steiner, W. A perspective on IEEE time-sensitive networking for industrial communication and automation systems. Proc. IEEE 2019, 107, 1094–1120. [Google Scholar] [CrossRef]
- Craciunas, S.S.; Oliver, R.S.; Ag, T. An overview of scheduling mechanisms for time-sensitive networks. In Proceedings of the Real-Time Summer School LÉcole dÉté Temps Réel (ETR), Paris, France, 28 August–1 September 2017; pp. 1551–3203. [Google Scholar]
- Cavalcanti, D.; Bush, S.; Illouz, M.; Kronauer, G.; Regev, A.; Venkatesan, G. Wireless TSN–Definitions, Use Cases & Standards Roadmap; Avnu Alliance: Beaverton, OR, USA, 2020; pp. 1–16. [Google Scholar]
- Mahmood, A.; Exel, R.; Trsek, H.; Sauter, T. Clock synchronization over IEEE 802.11—A survey of methodologies and protocols. IEEE Trans. Ind. Inform. 2016, 13, 907–922. [Google Scholar] [CrossRef]
- Vales, V.B.; Fernández, O.C.; Domínguez-Bolaño, T.; Escudero, C.J.; García-Naya, J.A. Fine time measurement for the Internet of Things: A practical approach using ESP32. IEEE Internet Things J. 2022, 9, 18305–18318. [Google Scholar] [CrossRef]
- Gringoli, F.; Schulz, M.; Link, J.; Hollick, M. Free your CSI: A channel state information extraction platform for modern Wi-Fi chipsets. In Proceedings of the 13th International Workshop on Wireless Network Testbeds, Experimental Evaluation & Characterization, Los Cabos, Mexico, 25 October 2019; pp. 21–28. [Google Scholar]
- Dulac-Arnold, G.; Evans, R.; van Hasselt, H.; Sunehag, P.; Lillicrap, T.; Hunt, J.; Mann, T.; Weber, T.; Degris, T.; Coppin, B. Deep Reinforcement Learning in Large Discrete Action Spaces. arXiv 2016, arXiv:1512.07679. [Google Scholar]
- Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal Policy Optimization Algorithms. arXiv 2017, arXiv:1707.06347. [Google Scholar]
- Maile, L.; Hielscher, K.S.J.; German, R. Delay-Guaranteeing Admission Control for Time-Sensitive Networking Using the Credit-Based Shaper. IEEE Open J. Commun. Soc. 2022, 3, 1834–1852. [Google Scholar] [CrossRef]
- IEEE 802.11ac-2013; IEEE Standard for Information Technology–Telecommunications and Information Exchange between Systems Local and Metropolitan Area Networks–Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications–Amendment 4: Enhancements for Very High Throughput for Operation in Bands below 6 GHz. IEEE Standard: Piscataway, NJ, USA, 2013. [CrossRef]
- Towers, M.; Terry, J.K.; Kwiatkowski, A.; Balis, J.U.; Cola, G.d.; Deleu, T.; Goulão, M.; Kallinteris, A.; KG, A.; Krimmel, M.; et al. Gymnasium. OpenAI Gym. 2023, arXiv:1606.01540. [Google Scholar] [CrossRef]
- Raffin, A.; Hill, A.; Gleave, A.; Kanervisto, A.; Ernestus, M.; Dormann, N. Stable-baselines3: Reliable reinforcement learning implementations. J. Mach. Learn. Res. 2021, 22, 1–8. [Google Scholar]
Notation | Definition |
---|---|
Set of time-sensitive streams (flows) | |
i-th stream in set ; each is defined | |
frame generated in the i-th stream; | |
Time duration of hyperperiod | |
Time duration of a time slot within the hyperperiod | |
The i-th hyperperiod of hyperperiod cycles | |
The i-th time slot in | |
The start time of the j-th frame transmission in the i-th stream from node k | |
The end time of the j-th frame transmission in the i-th stream from node k | |
Time when the j-th frame of i-th stream from node k enters the queue | |
The state at step t | |
The action at step t | |
The reward at step t |
Parameter | Value |
---|---|
Medium Access Method | Point Coordination Function |
Channel Bandwidth | 20 MHz |
Spatial Stream | 1 |
Guard Interval | 800 ns |
Slot Size | 1 ms |
Hypercycle | 100 ms |
Tx Overhead | SIFS: 16 μs |
Poll Frame: 22 byte |
Scenario | Channel Condition Variation | Num of Streams | Stream Type A (ST-A) | Stream Type B (ST-B) |
---|---|---|---|---|
S1 | Constant channel conditions MCS6 | ST-A: 400/400 ST-B: 50/50 | Data Size: 100 byte Period: 10 ms Latency: ≤ 3 ms | Data Size: 1000 byte Period: 100 ms Latency: ≤ 10 ms |
S2 | Sequential changes in channel conditions MCS4->MCS2->MCS4 per each STA | ST-A: 300/300 ST-B: 40/40 | ||
S3 | Overall decline in channel conditions MCS3->MCS1 | ST-A: 200/200 ST-B: 30/30 |
Parameters | WISE-DQN | WISE-A2C | WISE-PPO |
---|---|---|---|
Dimension of input layer | |||
Dimension of output layer | 4 | ||
Number of neurons in two hidden layers | 64, 64 | ||
Total Time Step | 1,000,000 | ||
Reset reward | Total frames × 0.001 | ||
Learning rate | 0.001 | ||
Batch size | 64 | ||
Discount factor | 0.99 | ||
optimizer | Adam | ||
Loss function | Huber Loss | MSE | MSE |
Replay Buffer | 1,000,000 | - | - |
target update interval | 100 | - | - |
Number of epoch | - | - | 10 |
Clip range | - | - | 0.2 |
Non-ML | WISE | ||||||
---|---|---|---|---|---|---|---|
EDF | WEDF | ILP | CBS | DQN | A2C | PPO | |
Scenario 1 | 100% | 100% | 100% | 100% | 93.4% | 99.9% | 100% |
Scenario 2 | 99.5% | 99.6% | 99.4% | 99.5% | 91.3% | 99.6% | 99.9% |
Scenario 3 | 96.4% | 98.8% | 96.4% | 92.7% | 90.5% | 99.4% | 99.9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Kim, Y.-J.; Kim, W.-T. Deep Reinforcement Learning-Based Adaptive Scheduling for Wireless Time-Sensitive Networking. Sensors 2024, 24, 5281. https://doi.org/10.3390/s24165281
Kim H, Kim Y-J, Kim W-T. Deep Reinforcement Learning-Based Adaptive Scheduling for Wireless Time-Sensitive Networking. Sensors. 2024; 24(16):5281. https://doi.org/10.3390/s24165281
Chicago/Turabian StyleKim, Hanjin, Young-Jin Kim, and Won-Tae Kim. 2024. "Deep Reinforcement Learning-Based Adaptive Scheduling for Wireless Time-Sensitive Networking" Sensors 24, no. 16: 5281. https://doi.org/10.3390/s24165281
APA StyleKim, H., Kim, Y. -J., & Kim, W. -T. (2024). Deep Reinforcement Learning-Based Adaptive Scheduling for Wireless Time-Sensitive Networking. Sensors, 24(16), 5281. https://doi.org/10.3390/s24165281