Wearable Multi-Sensor Positioning Prototype for Rowing Technique Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. System Description
2.2. Methods
2.2.1. Body Frame
East-North-Up (ENU)
Boat Frame (XYZ)
Attitude Angles and Coordinate Transformations
2.2.2. UWB Positioning Models
Trilateration
Periodic Least Squares (PLS)
Extended Kalman Filter (EKF) Overview
Constant Velocity EKF
Periodic EKF (PEKF)
2.2.3. Strapdown Inertial Navigation System (INS)
2.2.4. INS Loosely Coupled Integration
2.2.5. Rowing Dead Reckoning (RDR)
- 1.
- procedure StrokeDetection (time (t), accelerometer (), gyroscope ())
- 2.
- Define threshold for acceleration magnitude, Tf
- 3.
- Define threshold for angular velocity, Tw
- 4.
- Choose sliding window size, N
- 5.
- Calculate mean values at time (t),
- 6.
- If { } then
- 7.
- If { } then
- 8.
- continue
- 9.
- End if
- 10.
- Declare new stroke at time (t)
- 11.
- End if
- 12.
- End procedure
2.2.6. Experiment
3. Results and Discussion
3.1. UWB Results
3.2. INS Results
3.3. Rowing Dead Reckoning (RDR)
3.4. INS/GNSS Integration Results
3.5. INS/UWB Integration Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soper, C.; Hume, P.A. Towards an ideal rowing technique for performance. Sports Med. 2004, 34, 825–848. [Google Scholar] [CrossRef] [PubMed]
- Worsey, M.T.; Espinosa, H.G.; Shepherd, J.B.; Thiel, D.V. A systematic review of performance analysis in rowing using inertial sensors. Electronics 2019, 8, 1304. [Google Scholar] [CrossRef]
- Smith, R.; Loschner, C. Biomechanics feedback for rowing. J. Sports Sci. 2002, 20, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Tessendorf, B.; Gravenhorst, F.; Arnrich, B.; Tröster, G. An imu-based sensor network to continuously monitor rowing technique on the water. In Proceedings of the 2011 Seventh International Conference on Intelligent Sensors, Sensor Networks and Information Processing, Adelaide, Australia, 6–9 December 2011; IEEE: New York, NY, USA, 2011; pp. 253–258. [Google Scholar]
- Baudouin, A.; Hawkins, D. A biomechanical review of factors affecting rowing performance. Br. J. Sports Med. 2002, 36, 396–402. [Google Scholar] [CrossRef]
- Armstrong, A.; Nokes, L. Sensor node acceleration signatures and electromyography in synchronization and sequencing analysis in sport: A rowing perspective. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2017, 231, 253–261. [Google Scholar]
- Ruffaldi, E.; Peppoloni, L.; Filippeschi, A. Sensor fusion for complex articulated body tracking applied in rowing. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2015, 229, 92–102. [Google Scholar] [CrossRef]
- Kleshnev, V. Boat acceleration, temporal structure of the stroke cycle, and effectiveness in rowing. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2010, 224, 63–74. [Google Scholar] [CrossRef]
- Llosa, J.; Vilajosana, I.; Vilajosana, X.; Navarro, N.; Suriñach, E.; Marquès, J.M. REMOTE, a wireless sensor network based system to monitor rowing performance. Sensors 2009, 9, 7069–7082. [Google Scholar] [CrossRef]
- Gravenhorst, F.; Muaremi, A.; Kottmann, F.; Tröster, G.; Sigrist, R.; Gerig, N.; Draper, C. Strap and row: Rowing technique analysis based on inertial measurement units implemented in mobile phones. In Proceedings of the 2014 IEEE Ninth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), Singapore, 21–24 April 2014; IEEE: New York, NY, USA, 2014; pp. 1–6. [Google Scholar]
- Gravenhorst, F.; Turner, T.; Draper, C.; Smith, R.M.; Troester, G. Validation of a rowing oar angle measurement system based on an inertial measurement unit. In Proceedings of the 2013 12th IEEE International Conference on Trust, Security and Privacy in Computing and Communications, Melbourne, VIC, Australia, 16–18 July 2013; IEEE: New York, NY, USA, 2013; pp. 1412–1419. [Google Scholar]
- Avvenuti, M.; Cesarini, D.; Cimino, M.G. Mars, a multi-agent system for assessing rowers’ coordination via motion-based stigmergy. Sensors 2013, 13, 12218–12243. [Google Scholar] [CrossRef]
- Schaffert, N.; Mattes, K. Influence of acoustic feedback on boat speed and crew synchronization in elite junior rowing. Int. J. Sports Sci. Coach. 2016, 11, 832–845. [Google Scholar] [CrossRef]
- Cuijpers, L.S.; Passos, P.J.M.; Murgia, A.; Hoogerheide, A.; Lemmink, K.A.P.M.; de Poel, H.J. Rocking the boat: Does perfect rowing crew synchronization reduce detrimental boat movements? Scand. J. Med. Sci. Sports 2017, 27, 1697–1704. [Google Scholar] [CrossRef] [PubMed]
- Groves, P.D. Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems, 2nd ed.; Artech House: Boston, MA, USA, 2013. [Google Scholar]
- Camomilla, V.; Bergamini, E.; Fantozzi, S.; Vannozzi, G. Trends supporting the in-field use of wearable inertial sensors for sport performance evaluation: A systematic review. Sensors 2018, 18, 873. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, P.; Syed, Z.; Noureldin, A.; Syed, Z. MEMS-Based Integrated Navigation; Artech House: Boston, MA, USA, 2010. [Google Scholar]
- Chang, H.W.; Georgy, J.; El-Sheimy, N. Cycling dead reckoning for enhanced portable device navigation on multi-gear bicycles. GPS Solut. 2015, 19, 611–621. [Google Scholar] [CrossRef]
- Dubus, G. Evaluation of four models for the sonification of elite rowing. J. Multimodal User Interfaces 2012, 5, 143–156. [Google Scholar] [CrossRef]
- Groh, B.H.; Reinfelder, S.J.; Streicher, M.N.; Taraben, A.; Eskofier, B.M. Movement prediction in rowing using a Dynamic Time Warping based stroke detection. In Proceedings of the 2014 IEEE Ninth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), Singapore, 21–24 April 2014; IEEE: New York, NY, USA, 2014; pp. 1–6. [Google Scholar]
- Day, A.H.; Campbell, I.; Clelland, D.; Cichowicz, J. An experimental study of unsteady hydrodynamics of a single scull. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2011, 225, 282–294. [Google Scholar] [CrossRef]
- Cloud, B.; Tarien, B.; Liu, A.; Shedd, T.; Lin, X.; Hubbard, M.; Crawford, R.P.; Moore, J.K. Adaptive smartphone-based sensor fusion for estimating competitive rowing kinematic metrics. PLoS ONE 2019, 14, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Mpimis, A.; Gikas, V. Monitoring and evaluation of rowing performance using mobile mapping data. Arch. Fotogram. Kartogr. I Teledetekcji 2011, 22, 337–349. [Google Scholar]
- Rodriguez Mendoza, L.; O’Keefe, K. Periodic extended kalman filter to estimate rowing motion indoors using a wearable ultra-wideband ranging positioning system. In Proceedings of the 2021 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Lloret de Mar, Spain, 29 November–2 December 2021; IEEE: New York, NY, USA, 2021; pp. 1–8. [Google Scholar]
- U-Blox. C099-F9P: Application Board (Rev. E), ODIN-W2 u-ConnectXpress Software-User Guide. 2020. Available online: https://content.u-blox.com/sites/default/files/C099-F9P-AppBoard-ODIN-W2-uCX_UserGuide_%28UBX-18055649%29.pdf (accessed on 29 June 2021).
- STMicroelectronics. UM2324: User Manual STM32 Nucleo-64 Boards. 2020. Available online: https://www.st.com/resource/en/user_manual/dm00452640-stm32-nucleo-64-boards-with-stm32g07xrb-mcus-stmicroelectronics.pdf (accessed on 20 March 2021).
- U-Blox. ZED-F9P-02B: U-Blox F9 High Precision GNSS Module-Data Sheet. 2021. Available online: https://www.verical.com/datasheet/u-blox-gps-receiver-ZED-F9P-02B-7307625.pdf (accessed on 21 June 2021).
- Pimoroni. GitHub Inc. 2021. Available online: https://github.com/pimoroni/explorer-hat (accessed on 21 June 2021).
- RTKLIB. RTKLIB ver. 2.4.2. Manual. 2023. Available online: https://www.scribd.com/document/494593890/manual-2-4-2 (accessed on 21 June 2021).
- Tjhai, C. Integration of Multiple Low-Cost Wearable Inertial/Magnetic Sensors and Kinematics of Lower Limbs for Improving Pedestrian Navigation Systems. Ph.D. Thesis, University of Calgary, Calgary, AB, Canada, 2019. [Google Scholar]
- Noureldin, A.; Karamat, T.B.; Georgy, J. Fundamentals of Inertial Navigation, Satellite-Based Positioning and Their Integration; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Pedley, M. Tilt Sensing Using a Three-Axis Accelerometer. Report, Freescale Semiconductor. 2013. Available online: https://www.nxp.com/docs/en/application-note/AN3461.pdf (accessed on 21 June 2021).
- Uner, M. Frequency, Amplitude, and Phase Tracking of Nonsinusoidal Signal in Noise with Extended Kalman Filter. Master’s Thesis, Naval Postgraduate School Monterey, Monterey, CA, USA, 1991. [Google Scholar]
- Saboury, J. Multi-Tap Extended Kalman Filter for a Periodic Waveform with Uncertain Frequency and Waveform Shape, and Data Dropouts. Master’s Thesis, University of Wisconsin-Milwaukee, Milwaukee, WI, USA, 2019. [Google Scholar]
- Brown, R.G.; Hwang, P.Y. Introduction to Random Signals and Applied Kalman Filtering, 2nd ed.; John Wiley & Sons: Toronto, ON, Canada, 1992. [Google Scholar]
- Grewal, M.S.; Weill, L.R.; Andrews, A.P. Global Positioning Systems, Inertial Navigation, and Integration, 1st ed.; John Wiley & Sons: Toronto, ON, Canada, 2001. [Google Scholar]
- Grewal, M.S.; Andrews, A.P. Kalman Filtering Theory and Pracice Using MATLAB, 3rd ed.; John Wiley & Sons: Toronto, ON, Canada, 2001. [Google Scholar]
- Hofmann-Wellenhof, B.; Lichtenegger, H.; Wasle, E. GNSS-Global Navigation Satellite Systems; Springer: Vienna, Austria, 2008; pp. 277–307. [Google Scholar]
- Topcon Positioning Systems, “HiPer SR Specifications”, October 2021. Available online: https://www.topconpositioning.com/gnss/gnss-receivers/hiper-sr#panel-product-specifications (accessed on 21 June 2021).
- U-Blox. “ZED-F9P-02B, U-Blox F9 High Precision GNSS Module, Data Sheet. R04”. U-Blox. 2024. Available online: https://content.u-blox.com/sites/default/files/documents/ZED-F9P-02B_DataSheet_UBX-21023276.pdf (accessed on 1 August 2024).
Sensor | Manufacturer | Model | Description | Data Rate | Accuracy |
---|---|---|---|---|---|
UWB Receiver | Decawave | DW1000 | Single-chip wireless transceiver | 50 Hz | ±10 cm |
MEMS IMU | InvenSense | MPU6050 | 3-axis gyroscope + 3-axis accelerometer | 50 Hz | Accel.: 4 g Gyro.: 500 deg/s |
GNSS Receiver | U-Blox | ZED-F9P | Multi-band high precision GNSS module | 25 Hz | RTK mode: ±0.01 m + 1 ppm CEP |
GNSS Antenna | U-Blox | ANN-MB1 | Multiband L1/L5 | 25 Hz | N/A |
3D Outdoor Test Boat Frame Overall (120 s) | |||
---|---|---|---|
Method | X-axis | Y-axis | Z-axis |
Mean Error-Std. (m) | Mean Error-Std. (m) | Mean Error-Std. (m) | |
Trilateration UWB | 0.023 ± 0.105 | −0.015 ± 0.104 | 0.048 ± 0.222 |
PEKF UWB | 0.022 ± 0.121 | −0.020 ± 0.062 | 0.045 ± 0.129 |
EKF Const. Vel. UWB | −0.028 ± 0.152 | 0.002 ± 0.118 | −0.025 ± 0.189 |
INS/GNSS | −0.250 ± 0.458 | −0.060 ± 0.503 | 1.269 ± 1.207 |
INS/Trilateration UWB | −0.061 ± 0.101 | −0.094 ± 0.127 | 0.103 ± 0.148 |
INS/PEKF UWB | −0.070 ± 0.117 | −0.096 ± 0.106 | 0.136 ± 0.104 |
3D Outdoor Test Instantaneous Inertial Boat Frame Overall (120 s) | |||
---|---|---|---|
Method | X-axis | Y-axis | Z-axis |
Mean Error-Std. (m) | Mean Error-Std. (m) | Mean Error-Std. (m) | |
INS/RDR | 0.172 ± 1.236 | −0.583 ± 0.695 | 0.892 ± 0.856 |
3D Outdoor Test ENU Frame Overall (120 s) | |||
---|---|---|---|
Method | Easting | Northing | Up |
Mean Error-Std. (m) | Mean Error-Std. (m) | Mean Error-Std. (m) | |
INS/GNSS | −0.077 ± 0.496 | 0.131 ± 0.433 | 1.325 ± 1.207 |
INS/Trilateration UWB | 0.088 ± 0.129 | 0.077 ± 0.091 | 0.103 ± 0.148 |
INS/PEKF UWB | 0.089 ± 0.105 | 0.086 ± 0.111 | 0.136 ± 0.104 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodriguez Mendoza, L.; O’Keefe, K. Wearable Multi-Sensor Positioning Prototype for Rowing Technique Evaluation. Sensors 2024, 24, 5280. https://doi.org/10.3390/s24165280
Rodriguez Mendoza L, O’Keefe K. Wearable Multi-Sensor Positioning Prototype for Rowing Technique Evaluation. Sensors. 2024; 24(16):5280. https://doi.org/10.3390/s24165280
Chicago/Turabian StyleRodriguez Mendoza, Luis, and Kyle O’Keefe. 2024. "Wearable Multi-Sensor Positioning Prototype for Rowing Technique Evaluation" Sensors 24, no. 16: 5280. https://doi.org/10.3390/s24165280
APA StyleRodriguez Mendoza, L., & O’Keefe, K. (2024). Wearable Multi-Sensor Positioning Prototype for Rowing Technique Evaluation. Sensors, 24(16), 5280. https://doi.org/10.3390/s24165280