Comparative Study of Polymer-Modified Copper Oxide Electrochemical Sensors: Stability and Performance Analysis
Abstract
:1. Introduction
Polymer | Structure | Charge | Solubility | Additional Information | Reference |
---|---|---|---|---|---|
chitosan | + | in acidic environment |
| [12,21,22] | |
Nafion | - | water ethanol |
| [15,17,18,19,20] | |
polyvinylpyrrolidone | amphiphilic | water |
| [15,16] | |
hydroxypropyl cellulose | neutral | water, methanol, ethanol, isopropyl alcohol, acetone (polar organic solvents). |
| [23,26] | |
α-terpineol | neutral | in water 2.4 g/L, benzene, acetone, alcohols, glycerol |
| [24,25] |
2. Materials and Methods
2.1. Materials
2.2. Preparation of Modified Electrodes
2.3. Characterization Techniques
3. Results
3.1. CuO Receptor Characterization
3.2. Characterization of the Drop-Casted Layers
3.3. Electrochemical Characterization of Modified Electrodes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mohammadpour-Haratbar, A.; Mohammadpour-Haratbar, S.; Zare, Y.; Rhee, K.Y.; Park, S.-J. A Review on Non-Enzymatic Electrochemical Biosensors of Glucose Using Carbon Nanofiber Nanocomposites. Biosensors 2022, 12, 1004. [Google Scholar] [CrossRef]
- Adeel, M.; Rahman, M.M.; Caligiuri, I.; Canzonieri, V.; Rizzolio, F.; Daniele, S. Recent Advances of Electrochemical and Optical Enzyme-Free Glucose Sensors Operating at Physiological Conditions. Biosens. Bioelectron. 2020, 165, 112331. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.H.; Huang, K.J.; Wu, X. Recent Advances in Transition-Metal Dichalcogenides Based Electrochemical Biosensors: A Review. Biosens. Bioelectron. 2017, 97, 305–316. [Google Scholar] [CrossRef] [PubMed]
- Hou, H.; Zeinu, K.M.; Gao, S.; Liu, B.; Yang, J.; Hu, J. Recent Advances and Perspective on Design and Synthesis of Electrode Materials for Electrochemical Sensing of Heavy Metals. Energy Environ. Mater. 2018, 1, 113–131. [Google Scholar] [CrossRef]
- Metters, J.P.; Banks, C.E. Electrochemical Utilisation of Chemical Vapour Deposition Grown Carbon Nanotubes as Sensors. Vacuum 2012, 86, 507–519. [Google Scholar] [CrossRef]
- Chen, K.; Chou, W.; Liu, L.; Cui, Y.; Xue, P.; Jia, M. Electrochemical Sensors Fabricated by Electrospinning Technology: An Overview. Sensors 2019, 19, 3676. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, F.; Ashraf, N.; Zohuri, G.H.; Arbab-Zavar, M.H. Water-Compatible Synthesis of Core-Shell Polysilicate Molecularly Imprinted Polymer on Polyvinylpyrrolidone Capped Gold Nanoparticles for Electrochemical Sensing of Uric Acid. Microchem. J. 2022, 177, 107312. [Google Scholar] [CrossRef]
- Cha, S.M.; Nagaraju, G.; Chandra Sekhar, S.; Yu, J.S. A Facile Drop-Casting Approach to Nanostructured Copper Oxide-Painted Conductive Woven Textile as Binder-Free Electrode for Improved Energy Storage Performance in Redox-Additive Electrolyte. J. Mater. Chem. A Mater. 2017, 5, 2224–2234. [Google Scholar] [CrossRef]
- Guimaraes, G.A.A.; Lacerda, J.N.; Xing, Y.; Ponzio, E.A.; Pacheco, W.F.; Semaan, F.S.; Dornellas, R.M. Development and Application of Electrochemical Sensor of Boron-Doped Diamond (BDD) Modified by Drop Casting with Tin Hexacyanoferrate. J. Solid State Electrochem. 2020, 24, 1769–1779. [Google Scholar] [CrossRef]
- Kaliyaraj Selva Kumar, A.; Zhang, Y.; Li, D.; Compton, R.G. A Mini-Review: How Reliable Is the Drop Casting Technique? Electrochem. Commun. 2020, 121, 106867. [Google Scholar] [CrossRef]
- Wei, M.; Qiao, Y.; Zhao, H.; Liang, J.; Li, T.; Luo, Y.; Lu, S.; Shi, X.; Lu, W.; Sun, X. Electrochemical Non-Enzymatic Glucose Sensors: Recent Progress and Perspectives. Chem. Commun. 2020, 56, 14553–14569. [Google Scholar] [CrossRef]
- Bounegru, A.V.; Bounegru, I. Chitosan-Based Electrochemical Sensors for Pharmaceuticals and Clinical Applications. Polymers 2023, 15, 3539. [Google Scholar] [CrossRef] [PubMed]
- Desai, N.; Sudhakar, Y.N.; Patil, R.R.; Chandran, A.; M, N.; Agnihotri, A.S. Electrochemical Sensor Based on PVP Coated Cobalt Ferrite/Graphite/PANI Nanocomposite for the Detection of Hydrazine. Mater. Res. Express 2023, 10, 125505. [Google Scholar] [CrossRef]
- Nguyen, L.D.; Doan, T.C.D.; Huynh, T.M.; Nguyen, V.N.P.; Dinh, H.H.; Dang, D.M.T.; Dang, C.M. An Electrochemical Sensor Based on Polyvinyl Alcohol/Chitosan-Thermally Reduced Graphene Composite Modified Glassy Carbon Electrode for Sensitive Voltammetric Detection of Lead. Sens. Actuators B Chem. 2021, 345, 130443. [Google Scholar] [CrossRef]
- Mazurków, J.; Kusior, A.; Radecka, M. Nonenzymatic Glucose Sensors Based on Copper Sulfides: Effect of Binder-Particles Interactions in Drop-Casted Suspensions on Electrodes Electrochemical Performance. Sensors 2021, 21, 802. [Google Scholar] [CrossRef]
- Liu, X.; Cui, G.; Dong, L.; Wang, X.; Zhen, Q.; Sun, Y.; Ma, S.; Zhang, C.; Pang, H. Synchronous Electrochemical Detection of Dopamine and Uric Acid by a PMo12@MIL-100(Fe)@PVP Nanocomposite. Anal. Biochem. 2022, 648, 114670. [Google Scholar] [CrossRef]
- Yang, L.; Wang, B.; Qi, H.; Gao, Q.; Li, C.; Zhang, C. Highly Sensitive Electrochemical Sensor for the Determination of 8-Hydroxy-2′-Deoxyguanosine Incorporating SWCNTs-Nafion Composite Film. J. Sens. 2015, 2015, 504869. [Google Scholar] [CrossRef]
- Chen, L.; Compton, R.G. Reference Electrodes for Electrochemical Sensors Based on Redox Couples Immobilized within Nafion Films. ACS Sens. 2019, 4, 1716–1723. [Google Scholar] [CrossRef]
- Mazurków, J.M.; Kusior, A.; Radecka, M. Electrochemical Characterization of Modified Glassy Carbon Electrodes for Non-enzymatic Glucose Sensors. Sensors 2021, 21, 7928. [Google Scholar] [CrossRef]
- Tsai, K.-Y.; Peng, H.-F.; Huang, J.-J. Nafion Modified Electrochemical Sensor Integrated with a Feedback-Loop Indium-Gallium-Zinc Oxide Thin-Film Transistor for Enhancing Dopamine Detection Limit. Sens. Actuators A Phys. 2023, 354, 114287. [Google Scholar] [CrossRef]
- Mulyasuryani, A.; Prananto, Y.P.; Fardiyah, Q.; Widwiastuti, H.; Darjito, D. Application of Chitosan-Based Molecularly Imprinted Polymer in Development of Electrochemical Sensor for p-Aminophenol Determination. Polymers 2023, 15, 1818. [Google Scholar] [CrossRef] [PubMed]
- Alemu, D.; Getachew, E.; Mondal, A.K. Study on the Physicochemical Properties of Chitosan and Their Applications in the Biomedical Sector. Int. J. Polym. Sci. 2023, 2023, 5025341. [Google Scholar] [CrossRef]
- Gabrielli, V.; Frasconi, M. Cellulose-Based Functional Materials for Sensing. Chemosensors 2022, 10, 352. [Google Scholar] [CrossRef]
- Khaleel, C.; Tabanca, N.; Buchbauer, G. α-Terpineol, a Natural Monoterpene: A Review of Its Biological Properties. Open Chem. 2018, 16, 349–361. [Google Scholar] [CrossRef]
- Lee, C.; An, S.; Cho, Y.; Chang, J.; Park, J.; Lee, M. Performance Improvement of Indium Tin Oxide Electrochemical Sensor by Mixing Carbon Black. Sens. Mater. 2024, 36, 2199–2207. [Google Scholar] [CrossRef]
- Hu, H.; Wu, S.; Wang, C.; Wang, X.; Shi, X. Electrochemical Behaviour of Cellulose/Reduced Graphene Oxide/Carbon Fiber Paper Electrodes towards the Highly Sensitive Detection of Amitrole. RSC Adv. 2023, 13, 1867–1876. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Chai, G.; Zhao, X.; Dai, Y.; Qi, Y. Effect of Different Copper Sources on the Morphology of Cuprous Oxide and Its Application as a Non-Enzymatic Glucose Sensor. Sens. Actuators B Chem. 2020, 321, 128485. [Google Scholar] [CrossRef]
- Kusior, A. Voltammetric Detection of Glucose—The Electrochemical Behavior of the Copper Oxide Materials with Well-Defined Facets. Sensors 2022, 22, 4783. [Google Scholar] [CrossRef] [PubMed]
- Arun, K.J.; Batra, A.K.; Krishna, A.; Bhat, K.; Aggarwal, M.D.; Joseph Francis, P.J. Surfactant Free Hydrothermal Synthesis of Copper Oxide Nanoparticles. Am. J. Mater. Sci. 2015, 5, 36–38. [Google Scholar] [CrossRef]
- Zoolfakar, A.S.; Rani, R.A.; Morfa, A.J.; O’Mullane, A.P.; Kalantar-Zadeh, K. Nanostructured Copper Oxide Semiconductors: A Perspective on Materials, Synthesis Methods and Applications. J. Mater. Chem. C Mater. 2014, 2, 5247–5270. [Google Scholar] [CrossRef]
- Heinemann, M.; Eifert, B.; Heiliger, C. Band Structure and Phase Stability of the Copper Oxides Cu2O, CuO, and Cu4O3. Phys. Rev. B Condens. Matter. Mater. Phys. 2013, 87, 3–7. [Google Scholar] [CrossRef]
- Soon, A.; Todorova, M.; Delley, B.; Stampfl, C. Thermodynamic Stability and Structure of Copper Oxide Surfaces: A First-Principles Investigation. Phys. Rev. B Condens. Matter. Mater. Phys. 2007, 75, 125420. [Google Scholar] [CrossRef]
- Amano, F.; Ebina, T.; Ohtani, B. Enhancement of Photocathodic Stability of P-Type Copper(I) Oxide Electrodes by Surface Etching Treatment. Thin Solid Films 2014, 550, 340–346. [Google Scholar] [CrossRef]
- Choudhry, N.A.; Kampouris, D.K.; Kadara, R.O.; Jenkinson, N.; Banks, C.E. Next Generation Screen Printed Electrochemical Platforms: Non-Enzymatic Sensing of Carbohydrates Using Copper(Ii) Oxide Screen Printed Electrodes. Anal. Methods 2009, 1, 183–187. [Google Scholar] [CrossRef]
- Xu, F.; Deng, M.; Li, G.; Chen, S.; Wang, L. Electrochemical Behavior of Cuprous Oxide–Reduced Graphene Oxide Nanocomposites and Their Application in Nonenzymatic Hydrogen Peroxide Sensing. Electrochim. Acta 2013, 88, 59–65. [Google Scholar] [CrossRef]
- Miao, X.-M.; Yuan, R.; Chai, Y.-Q.; Shi, Y.-T.; Yuan, Y.-Y. Direct Electrocatalytic Reduction of Hydrogen Peroxide Based on Nafion and Copper Oxide Nanoparticles Modified Pt Electrode. J. Electroanal. Chem. 2008, 612, 157–163. [Google Scholar] [CrossRef]
- Li, B.; Zhou, Y.; Wu, W.; Liu, M.; Mei, S.; Zhou, Y.; Jing, T. Highly Selective and Sensitive Determination of Dopamine by the Novel Molecularly Imprinted Poly(Nicotinamide)/CuO Nanoparticles Modified Electrode. Biosens. Bioelectron. 2015, 67, 121–128. [Google Scholar] [CrossRef]
- Reddy, S.; Kumara Swamy, B.E.; Jayadevappa, H. CuO Nanoparticle Sensor for the Electrochemical Determination of Dopamine. Electrochim. Acta 2012, 61, 78–86. [Google Scholar] [CrossRef]
- Li, H.; Ye, L.; Wang, Y.; Xie, C. A Glassy Carbon Electrode Modified with Hollow Cubic Cuprous Oxide for Voltammetric Sensing of L-Cysteine. Microchim. Acta 2018, 185, 5. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.; Wang, M.; Mao, X.; Wang, Y.; Li, L.; Xia, W. A Facile Sensitive l-Tyrosine Electrochemical Sensor Based on a Coupled CuO/Cu2O Nanoparticles and Multi-Walled Carbon Nanotubes Nanocomposite Film. Anal. Methods 2015, 7, 1313–1320. [Google Scholar] [CrossRef]
- Khoshhesab, Z.M. Simultaneous Electrochemical Determination of Acetaminophen, Caffeine and Ascorbic Acid Using a New Electrochemical Sensor Based on CuO–Graphene Nanocomposite. RSC Adv. 2015, 5, 95140–95148. [Google Scholar] [CrossRef]
- Scherzer, M.; Girgsdies, F.; Stotz, E.; Willinger, M.-G.; Frei, E.; Schlögl, R.; Pietsch, U.; Lunkenbein, T. Electrochemical Surface Oxidation of Copper Studied by in Situ Grazing Incidence X-Ray Diffraction. J. Phys. Chem. C 2019, 123, 13253–13262. [Google Scholar] [CrossRef]
- Debbichi, L.; Marco de Lucas, M.C.; Pierson, J.F.; Krüger, P. Vibrational Properties of CuO and Cu4O3 from First-Principles Calculations, and Raman and Infrared Spectroscopy. J. Phys. Chem. C 2012, 116, 10232–10237. [Google Scholar] [CrossRef]
- Aljuhani, A.; Riyadh, S.M.; Khalil, K.D. Chitosan/CuO Nanocomposite Films Mediated Regioselective Synthesis of 1,3,4-Trisubstituted Pyrazoles under Microwave Irradiation. J. Saudi Chem. Soc. 2021, 25, 101276. [Google Scholar] [CrossRef]
- Kissinger, P.T.; Heineman, W.R. Cyclic Voltammetry. J. Chem. Educ. 1983, 60, 702. [Google Scholar] [CrossRef]
- Cassidy, J.F.; de Carvalho, R.C.; Betts, A.J. Use of Inner/Outer Sphere Terminology in Electrochemistry—A Hexacyanoferrate II/III Case Study. Electrochem 2023, 4, 313–349. [Google Scholar] [CrossRef]
- McFarlane, N.L.; Wagner, N.J.; Kaler, E.W.; Lynch, M.L. Poly(Ethylene Oxide) (PEO) and Poly(Vinyl Pyrolidone) (PVP) Induce Different Changes in the Colloid Stability of Nanoparticles. Langmuir 2010, 26, 13823–13830. [Google Scholar] [CrossRef]
- Stejskal, J.; Sapurina, I. Polyaniline: Thin Films and Colloidal Dispersions (IUPAC Technical Report). Pure Appl. Chem. 2005, 77, 815–826. [Google Scholar] [CrossRef]
- Chou, K.-S.; Lai, Y.-S. Effect of Polyvinyl Pyrrolidone Molecular Weights on the Formation of Nanosized Silver Colloids. Mater. Chem. Phys. 2004, 83, 82–88. [Google Scholar] [CrossRef]
- Lazanas, A.C.; Prodromidis, M.I. Electrochemical Impedance Spectroscopy—A Tutorial. ACS Meas. Sci. Au 2023, 3, 162–193. [Google Scholar] [CrossRef]
- Brett, C.M.A. Electrochemical Impedance Spectroscopy in the Characterisation and Application of Modified Electrodes for Electrochemical Sensors and Biosensors. Molecules 2022, 27, 1497. [Google Scholar] [CrossRef] [PubMed]
- Madej, M.; Matoga, D.; Skaźnik, K.; Porada, R.; Baś, B.; Kochana, J. A Voltammetric Sensor Based on Mixed Proton-Electron Conducting Composite Including Metal-Organic Framework JUK-2 for Determination of Citalopram. Microchim. Acta 2021, 188, 184. [Google Scholar] [CrossRef]
- Chen, Z.; Patel, R.; Berry, J.; Keyes, C.; Satterfield, C.; Simmons, C.; Neeson, A.; Cao, X.; Wu, Q. Development of Screen-Printable Nafion Dispersion for Electrochemical Sensor. Appl. Sci. 2022, 12, 6533. [Google Scholar] [CrossRef]
- Burke, L.D.; Ryan, T.G. The role of incipient hydrous oxides in the oxidation of glucose and some of its derivatives in aqueous media. Electrochim. Acta 1992, 37, 1363–1370. [Google Scholar] [CrossRef]
- Burke, L.D. Premonolayer Oxidation and Its Role in Electrocatalysis. Electrochim. Acta 1994, 39, 1841–1848. [Google Scholar] [CrossRef]
- Burke, L.D.; Ryan, T.G. The Adatom/Incipient Hydrous Oxide Mediator Model for Reactions on Silver in Base. J. Appl. Electrochem. 1990, 20, 1053–1058. [Google Scholar] [CrossRef]
- Burke, L.D.; Bruton, G.M.; Collins, J.A. The Redox Properties of Active Sites and the Importance of the Latter in Electrocatalysis at Copper in Base. Electrochim. Acta 1998, 44, 1467–1479. [Google Scholar] [CrossRef]
- Može, M. Effect of Boiling-Induced Aging on Pool Boiling Heat Transfer Performance of Untreated and Laser-Textured Copper Surfaces. Appl. Therm. Eng. 2020, 181, 116025. [Google Scholar] [CrossRef]
- Može, M.; Vajc, V.; Zupančič, M.; Golobič, I. Hydrophilic and Hydrophobic Nanostructured Copper Surfaces for Efficient Pool Boiling Heat Transfer with Water, Water/Butanol Mixtures and Novec 649. Nanomaterials 2021, 11, 3216. [Google Scholar] [CrossRef] [PubMed]
Parameter | SPE | α-Terpineol | Nafion Solution | PVP | |
---|---|---|---|---|---|
Re | Ω | 130.94 | 132.29 | 121.45 | 120.83 |
CPECT | Ssα | 2.06·10−6 | 1.95·10−4 | 2.31·10−4 | 2.47·10−4 |
α | - | 0.9 | 0.8 | 0.9 | 0.8 |
RCT | Ω | 2524.13 | 2.48·105 | 13,106.98 | 16,562.93 |
WCT | Ω s−0.5 | 1.30·10−4 | 8.33·10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baziak, A.; Kusior, A. Comparative Study of Polymer-Modified Copper Oxide Electrochemical Sensors: Stability and Performance Analysis. Sensors 2024, 24, 5290. https://doi.org/10.3390/s24165290
Baziak A, Kusior A. Comparative Study of Polymer-Modified Copper Oxide Electrochemical Sensors: Stability and Performance Analysis. Sensors. 2024; 24(16):5290. https://doi.org/10.3390/s24165290
Chicago/Turabian StyleBaziak, Andrzej, and Anna Kusior. 2024. "Comparative Study of Polymer-Modified Copper Oxide Electrochemical Sensors: Stability and Performance Analysis" Sensors 24, no. 16: 5290. https://doi.org/10.3390/s24165290
APA StyleBaziak, A., & Kusior, A. (2024). Comparative Study of Polymer-Modified Copper Oxide Electrochemical Sensors: Stability and Performance Analysis. Sensors, 24(16), 5290. https://doi.org/10.3390/s24165290