Compact Silicon-Arrayed Waveguide Gratings with Low Nonuniformity
Abstract
:1. Introduction
2. Theory and Design
3. Measurements and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seeds, A.J.; Williams, K.J. Microwave photonics. J. Light. Technol. 2006, 24, 4628–4641. [Google Scholar] [CrossRef]
- Minasian, R.A. Photonic signal processing of microwave signals. IEEE Trans. Microw. Theory Tech. 2006, 54, 832–846. [Google Scholar] [CrossRef]
- Marpaung, D.; Roeloffzen, C.; Heideman, R.; Leinse, A.; Sales, S.; Capmany, J. Integrated microwave photonics. Laser Photonics Rev. 2013, 7, 506–538. [Google Scholar] [CrossRef]
- Munoz, P.; Domenech, J.D.; Artundo, I.; den Bested, J.H.; Capmany, J. Evolution of fabless generic photonic integration. In Proceedings of the 2013 15th International Conference on Transparent Optical Networks (ICTON), Cartagena, Spain, 23–27 June 2023; pp. 1–3. [Google Scholar]
- Doménech, J.; Muñoz, P.; Capmany, J. Discretely tunable microwave photonics beamformer based on ring resonators and arrayed waveguide gratings. In Proceedings of the Silicon Photonics and Photonic Integrated Circuits II, Brussels, Belgium, 12–16 April 2010; pp. 373–380. [Google Scholar]
- Hu, G.; Cui, Y.; Yang, Y.; Yang, J.; Tian, D.; Yun, B.; Zhang, R. Optical beamformer based on diffraction order multiplexing (DOM) of an arrayed waveguide grating. J. Light. Technol. 2019, 37, 2898–2904. [Google Scholar] [CrossRef]
- Vidal, B.; Corral, J.L.; Piqueras, M.A.; Marti, J. Optical delay line based on arrayed waveguide gratings’ spectral periodicity and dispersive media for antenna beamforming applications. IEEE J. Sel. Top. Quantum Electron. 2002, 8, 1202–1210. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, L.; Lu, L.; Wang, X.; Chen, J. Integrated optical delay line based on a loopback arrayed waveguide grating for radio-frequency filtering. IEEE Photonics J. 2020, 12, 1–11. [Google Scholar] [CrossRef]
- Carpintero, G.; Rouvalis, E.; Ławniczuk, K.; Van Dijk, F.; Chtioui, M.; Renaud, C.C.; Leijtens, X.J.; Bente, E.A.; Seeds, A. Millimeter-wave signal generation by optical heterodyne of two channels from an arrayed waveguide grating-based multi-wavelength laser. In Proceedings of the 2012 IEEE International Topical Meeting on Microwave Photonics, Noordwijk, The Netherlands, 11–14 September 2012; pp. 51–54. [Google Scholar]
- Guo, H.; Xiao, G.; Mrad, N.; Albert, J.; Yao, J. Wavelength interrogator based on closed-loop piezo-electrically scanned space-to-wavelength mapping of an arrayed waveguide grating. J. Light. Technol. 2010, 28, 2654–2659. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Tsang, H.K. Ultracompact 40-channel arrayed waveguide grating on silicon nitride platform at 860 nm. IEEE J. Quantum Electron. 2019, 56, 1–8. [Google Scholar] [CrossRef]
- Akca, B.; Považay, B.; Alex, A.; Wörhoff, K.; De Ridder, R.; Drexler, W.; Pollnau, M. Miniature spectrometer and beam splitter for an optical coherence tomography on a silicon chip. Opt. Express 2013, 21, 16648–16656. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, Y.; Wang, J.; Yi, D.; Chan, D.W.U.; Yuan, W.; Tsang, H.K. Integrated scanning spectrometer with a tunable micro-ring resonator and an arrayed waveguide grating. Photonics Res. 2022, 10, A74–A81. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Tsang, H.K. High resolution silicon nitride spectrometer by integrating micro-rings and arrayed waveguide gratings in tandem. In Proceedings of the 2019 IEEE 16th International Conference on Group IV Photonics (GFP), Singapore, 28–30 August 2019; pp. 1–2. [Google Scholar]
- Ismail, N.; Choo-Smith, L.-P.; Wörhoff, K.; Driessen, A.; Baclig, A.; Caspers, P.; Puppels, G.; De Ridder, R.; Pollnau, M. Raman spectroscopy with an integrated arrayed-waveguide grating. Opt. Lett. 2011, 36, 4629–4631. [Google Scholar] [CrossRef] [PubMed]
- Bogaerts, W.; Selvaraja, S.K.; Dumon, P.; Brouckaert, J.; De Vos, K.; Van Thourhout, D.; Baets, R. Silicon-on-insulator spectral filters fabricated with CMOS technology. IEEE J. Sel. Top. Quantum Electron. 2010, 16, 33–44. [Google Scholar] [CrossRef]
- Zou, J.; Ma, X.; Xia, X.; Wang, C.; Zhang, M.; Hu, J.; Wang, X.; He, J.-J. Novel wavelength multiplexer using (N+ 1)×(N+ 1) arrayed waveguide grating and polarization-combiner-rotator on SOI platform. J. Light. Technol. 2021, 39, 2431–2437. [Google Scholar] [CrossRef]
- Stoll, A.; Zhang, Z.; Haynes, R.; Roth, M. High-Resolution Arrayed-Waveguide-Gratings in Astronomy: Design and Fabrication Challenges. Photonics 2017, 4, 30–32. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Lin, Z.; Zhang, S.; Zhang, Z.; Zhang, C.; Tang, C.; Li, E.; Prades, J.D. Design, fabrication and characterization of arrayed waveguide grating devices based on different polymers. Opt. Commun. 2023, 530, 129139. [Google Scholar] [CrossRef]
- Weng, S.; Yuan, P.; Zhuang, W.; Zhang, D.; Luo, F.; Zhu, L. SOI-Based Multi-Channel AWG with Fiber Bragg Grating Sensing Interrogation System. Photonics 2021, 8, 214. [Google Scholar] [CrossRef]
- Li, S.; Yuan, P.; Li, T.; Li, K.; Zhu, L. SOI-based 15-channel arrayed waveguide grating design for fiber Bragg grating interrogator. Photonics Nanostructures-Fundam. Appl. 2023, 53, 101113. [Google Scholar] [CrossRef]
- Stoll, A.; Madhav, K.; Roth, M. Performance limits of astronomical arrayed waveguide gratings on a silica platform. Opt. Express 2020, 28, 39354–39367. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, J.; Wang, L.; You, J.; Wang, Y.; Yin, X.; Chen, J.; Sun, B.; An, J.; Wu, Y. The O-band 20-channel 800 GHz Arrayed Waveguide Grating based on silica platform for 1 Tb/s or higher-speed communication system. Opt. Laser Technol. 2022, 156, 108475. [Google Scholar] [CrossRef]
- Seyringer, D.; Serecunova, S.; Uherek, F.; Seyringer, H.; Chovan, J. 256-Channel 10-GHz AWG demultiplexer for ultra-dense WDM. In Proceedings of the 2023 23rd International Conference on Transparent Optical Networks (ICTON), Bucharest, Romania, 2–6 July 2023; pp. 1–4. [Google Scholar]
- Bissessur, H.; Gaborit, F.; Martin, B.; Pagnod-Rossiaux, P.; Peyre, J.-L.; Renaud, M. 16channel phased array wavelength demultiplexer on InP with low polarisation sensitivity. Electron. Lett. 1994, 30, 336–337. [Google Scholar] [CrossRef]
- Schindler, A.; Garten, A.-B.; Boerma, H.; Ganzer, F.; Runge, P.; Schell, M. Low crosstalk INP-Based arrayed waveguide grating PIC. In Proceedings of the 2022 IEEE Photonics Conference (IPC), Vancouver, BC, Canada, 13–17 November 2022; pp. 1–2. [Google Scholar]
- Takenobu, S.; Kuwana, Y.; Takayama, K.; Sakane, Y.; Mitsufumi, O.; Hideki, S.; Norbert, K.; Brinker, W.; Huihai, Y.; Zawadzki, C. All-polymer 8x8 AWG wavelength router using ultra low loss polymer optical waveguide material (CYTOPTM). In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 24–28 February 2008; p. JWA32. [Google Scholar]
- Caut, A.; Girardi, M.; Torres-Company, V.; Larsson, A.; Karlsson, M. Channel Scalability of Silicon Nitride (De-) multiplexers for Optical Interconnects at 1 μm. J. Light. Technol. 2023, 42, 276–286. [Google Scholar] [CrossRef]
- Shang, K.; Pathak, S.; Qin, C.; Yoo, S.B. Low-loss compact silicon nitride arrayed waveguide gratings for photonic integrated circuits. IEEE Photonics J. 2017, 9, 1–5. [Google Scholar] [CrossRef]
- van Wijk, A.; Doerr, C.R.; Ali, Z.; Karabiyik, M.; Akca, B.I. Compact ultrabroad-bandwidth cascaded arrayed waveguide gratings. Opt. Express 2020, 28, 14618–14626. [Google Scholar] [CrossRef]
- Tu, H.; Zhang, Y.; Guo, W. Arrayed Waveguide Grating Based on Z-cut Lithium Niobate Platform. In Proceedings of the 2023 Opto-Electronics and Communications Conference (OECC), Shanghai, China, 2–6 July 2023; pp. 1–3. [Google Scholar]
- Yu, Y.; Yu, Z.; Zhang, Z.; Tsang, H.K.; Sun, X. Wavelength-division multiplexing on an etchless lithium niobate integrated platform. ACS Photonics 2022, 9, 3253–3259. [Google Scholar] [CrossRef]
- van Wijk, A.C.; Doerr, C.R.; Akca, I.B. Custom Arrayed Waveguide Gratings with Improved Performance. Adv. Photonics Res. 2023, 4, 2300198. [Google Scholar] [CrossRef]
- Wang, J.; Sheng, Z.; Li, L.; Pang, A.; Wu, A.; Li, W.; Wang, X.; Zou, S.; Qi, M.; Gan, F. Low-loss and low-crosstalk 8× 8 silicon nanowire AWG routers fabricated with CMOS technology. Opt. Express 2014, 22, 9395–9403. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Le, Z.; Hu, J.; He, J.-J. Performance improvement for silicon-based arrayed waveguide grating router. Opt. Express 2017, 25, 9963–9973. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Zou, X.; Zou, F.; Zhang, Y.; Yan, L.; Pan, W. High-performance 32-channel silicon arrayed waveguide grating with 100 GHz spacing. IEEE Photonics Technol. Lett. 2023, 35, 369–372. [Google Scholar] [CrossRef]
- Ismail, N.; Sun, F.; Sengo, G.; Wörhoff, K.; Driessen, A.; De Ridder, R.M.; Pollnau, M. Improved arrayed-waveguide-grating layout avoiding systematic phase errors. Opt. Express 2011, 19, 8781–8794. [Google Scholar] [CrossRef] [PubMed]
- Adar, R.; Henry, C.H.; Dragone, C.; Kistler, R.C.; Milbrodt, M.A. Broad-band array multiplexers made with silica waveguides on silicon. J. Light. Technol. 1993, 11, 212–219. [Google Scholar] [CrossRef]
- Cheung, S.; Su, T.; Okamoto, K.; Yoo, S. Ultra-compact silicon photonic 512 × 512 25 GHz arrayed waveguide grating router. IEEE J. Sel. Top. Quantum Electron. 2013, 20, 310–316. [Google Scholar] [CrossRef]
- Gatkine, P.; Veilleux, S.; Hu, Y.; Bland-Hawthorn, J.; Dagenais, M. Arrayed waveguide grating spectrometers for astronomical applications: New results. Opt. Express 2017, 25, 17918–17935. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Xiong, H.-N.; Li, X.; Chen, X.; Wang, C.; Le, Z.; Wang, X.; Ma, X.; Zou, J. Crosstalk reduction for Arrayed waveguide gratings on Silicon-on-Insulator platform. Opt. Laser Technol. 2024, 175, 110817. [Google Scholar] [CrossRef]
- Fu, X.; Zhang, L.; Yang, L. Experimental Demonstration of a Horseshoe-shaped 16-channel Arrayed Waveguide Grating (De) multiplexer. In Proceedings of the 2019 PhotonIcs & Electromagnetics Research Symposium-Spring (PIERS-Spring), Rome, Italy, 17–20 June 2019; pp. 2189–2192. [Google Scholar]
- Ye, T.; Fu, Y.; Qiao, L.; Chu, T. Low-crosstalk Si arrayed waveguide grating with parabolic tapers. Opt. Express 2014, 22, 31899–31906. [Google Scholar] [CrossRef]
- Smit, M.K.; Van Dam, C. PHASAR-based WDM-devices: Principles, design and applications. IEEE J. Sel. Top. Quantum Electron. 1996, 2, 236–250. [Google Scholar] [CrossRef]
- Dai, D.; Liu, L.; Wosinski, L.; He, S. Design and fabrication of an ultrasmall overlapped AWG demultiplexers based on α-Si nanowire waveguides. Electron. Lett. 2006, 42, 400–402. [Google Scholar] [CrossRef]
- Okamoto, K.; Ishida, K. Fabrication of silicon reflection-type arrayed-waveguide gratings with distributed Bragg reflectors. Opt. Lett. 2013, 38, 3530–3533. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Dai, D. Ultra-small Si-nanowire-based 400 GHz-spacing 15 × 15 arrayed-waveguide grating router with microbends. Electron. Lett. 2011, 47, 1. [Google Scholar] [CrossRef]
- Pathak, S.; Vanslembrouck, M.; Dumon, P.; Van Thourhout, D.; Verheyen, P.; Lepage, G.; Absil, P.; Bogaerts, W. Effect of mask discretization on performance of silicon arrayed waveguide gratings. IEEE Photonics Technol. Lett. 2014, 26, 718–721. [Google Scholar] [CrossRef]
- Fu, J.; Chen, Y.; Sun, S.; Han, Y.; Huang, Y.; Lin, S.; Yang, L.; Yu, J. A Low-loss 4-channel Arrayed Waveguide Grating Using Parabolic Tapered Waveguides. In Proceedings of the Asia Communications and Photonics Conference, Beijing, China, 24–27 October 2020; p. M4A. 83. [Google Scholar]
- Kamei, S.; Ishii, M.; Kaneko, A.; Shibata, T.; Itoh, M. NXN Cyclic-Frequency Router With Improved Performance Based on Arrayed-Waveguide Grating. J. Light. Technol. 2009, 27, 4097–4104. [Google Scholar] [CrossRef]
- Sakamaki, Y.; Kamei, S.; Hashimoto, T.; Kitoh, T.; Takahashi, H. Loss uniformity improvement of arrayed-waveguide grating with mode-field converters designed by wavefront matching method. J. Light. Technol. 2009, 27, 5710–5715. [Google Scholar] [CrossRef]
- Sheng, Z.; Dai, D.; He, S. Improve channel uniformity of an Si-nanowire AWG demultiplexer by using dual-tapered auxiliary waveguides. J. Light. Technol. 2007, 25, 3001–3007. [Google Scholar] [CrossRef]
Parameter | Symbol | Value | Units |
---|---|---|---|
Channel spacing | Δλ | 1.6 | nm |
Central wavelength | λc | 1549.3 | nm |
Length increment | ΔL | 28.29 | μm |
Number of input/output channels | Ni/No | 1/8 | |
Spacing of input/output waveguide | di/do | 2.7 | μm |
Spacing of array waveguides | da | 1.7 | μm |
Diffraction order | m | 43 | |
Gap between adjacent tapers | ga | 0.2 | μm |
Length of the tapers | Lt | 5 | μm |
Diameter of Rowland circle | D | 103 | μm |
Waveguide width | w | 0.45 | μm |
Parameter | Simulation | Measurement | Units |
---|---|---|---|
Central wavelength | 1549.3 | 1550.09 | nm |
Insertion loss | 3.17 | 4.18 | dB |
Crosstalk | −15.28 | −12.68 | dB |
Nonuniformity | 0.627 | 0.494 | dB |
3-dB bandwidth | 1.08 | 1.22 | dB |
FSR | 19.42 | 19.4 | nm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.; Zhou, Z.; Gao, X.; Xu, Z.; Han, S.; Chong, Y.; Min, R.; Yue, Y.; Duan, Z. Compact Silicon-Arrayed Waveguide Gratings with Low Nonuniformity. Sensors 2024, 24, 5303. https://doi.org/10.3390/s24165303
Yang C, Zhou Z, Gao X, Xu Z, Han S, Chong Y, Min R, Yue Y, Duan Z. Compact Silicon-Arrayed Waveguide Gratings with Low Nonuniformity. Sensors. 2024; 24(16):5303. https://doi.org/10.3390/s24165303
Chicago/Turabian StyleYang, Chengkun, Zhonghao Zhou, Xudong Gao, Zhengzhu Xu, Shoubao Han, Yuhua Chong, Rui Min, Yang Yue, and Zongming Duan. 2024. "Compact Silicon-Arrayed Waveguide Gratings with Low Nonuniformity" Sensors 24, no. 16: 5303. https://doi.org/10.3390/s24165303
APA StyleYang, C., Zhou, Z., Gao, X., Xu, Z., Han, S., Chong, Y., Min, R., Yue, Y., & Duan, Z. (2024). Compact Silicon-Arrayed Waveguide Gratings with Low Nonuniformity. Sensors, 24(16), 5303. https://doi.org/10.3390/s24165303