Label-Free Biosensor Based on Particle Plasmon Resonance Coupled with Diffraction Grating Waveguide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Fabrication of Sensor Chips
2.3. Sensing System and Measurements
2.4. Preparation of AuNPs
2.5. Immobilization of AuNPs on Glass Slides
2.6. Functionalization of Gold Nanoparticle Surface
2.7. Preparation and Characterization of Photopolymerizable Sol–Gel Films
2.8. Fabrication of Grating
3. Results and Discussion
3.1. Characterization of Photopolymerizable Sol–Gel Films
3.2. Optimization of Incident Angle and PSD Position
3.3. Effect of Glass Slide Thickness on Sensitivity
3.4. Theoretical Simulations
3.5. Biosensing Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Homola, J. Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 2003, 377, 528–539. [Google Scholar] [CrossRef] [PubMed]
- Mulvaney, P. Surface plasmon spectroscopy of nanosized metal particles. Langmuir 1996, 12, 788–800. [Google Scholar] [CrossRef]
- Nath, N.; Chilkoti, A. A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. Anal. Chem. 2002, 74, 504–509. [Google Scholar] [CrossRef]
- Englebienne, P.; Van Hoonacker, P.; Verhas, A.M. High-throughput screening using the surface plasmon resonance effect of colloidal gold nanoparticles. Analyst 2001, 126, 1645–1651. [Google Scholar] [CrossRef]
- Endo, T.; Kerman, K.; Nagatami, N.; Hiepa, H.M.; Kim, D.-K.; Yonezawa, Y.; Nakano, K.; Tamiya, E. Multiple Label-Free Detection of Antigen–Antibody Reaction Using Localized Surface Plasmon Resonance-Based Core–Shell Structured Nanoparticle Layer Nanochip. Anal. Chem. 2006, 78, 6465–6475. [Google Scholar] [CrossRef]
- Cheng, S.-F.; Chau, L.-K. Colloidal gold-modified optical fiber for chemical and biochemical sensing. Anal. Chem. 2003, 75, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Mitsui, K.; Honda, Y.; Kajikawa, K. Optical fiber affinity biosensor based on localized surface plasmon resonance. Appl. Phys. Lett. 2004, 85, 4231–4233. [Google Scholar] [CrossRef]
- Chau, L.-K.; Lin, Y.-F.; Cheng, S.-F.; Lin, T.-J. Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance. Sens. Actuat. B 2006, 113, 100–105. [Google Scholar] [CrossRef]
- Sai, V.V.R.; Kundu, T.; Mukherji, S. Novel U-bent fiber optic probe for localized surface plasmon resonance based biosensor. Biosens. Bioelectron. 2009, 24, 2804–2809. [Google Scholar] [CrossRef]
- Chen, C.-H.; Tsao, T.-C.; Li, W.-Y.; Shen, W.-C.; Tang, J.-L.; Jen, C.-P.; Cheng, C.-W.; Chau, L.-K.; Wu, W.-T. Novel U-shape gold nanoparticles-modified optical fiber for localized plasmon resonance chemical sensing. Microsyst. Technol. 2010, 16, 1207–1214. [Google Scholar] [CrossRef]
- Xu, Y.; Luo, Z.; Chen, J.; Huang, Z.; Wang, X.; An, H.; Duan, Y. Ω-Shaped Fiber-Optic Probe-Based Localized Surface Plasmon Resonance Biosensor for Real-Time Detection of Salmonella Typhimurium. Anal. Chem. 2018, 90, 13640–13646. [Google Scholar] [CrossRef]
- Cunningham, B.T.; Zhang, M.; Zhuo, Y.; Kwon, L.; Race, C. Recent advances in biosensing with photonic crystal surfaces: A review. IEEE Sens. J. 2016, 16, 3349–3366. [Google Scholar] [CrossRef]
- Paulsen, M.; Jahns, S.; Gerken, M. Intensity-based readout of resonant-waveguide grating biosensors: Systems and nanostructures. Photonics Nanostruct. 2017, 26, 69–79. [Google Scholar] [CrossRef]
- Al Mahmud, R.; Sagor, R.H.; Khan, M.Z.M. Surface plasmon refractive index biosensors: A review of optical fiber, multilayer 2D material and gratings, and MIM configurations. Opt. Laser Technol. 2023, 159, 108939. [Google Scholar] [CrossRef]
- Torrijos-Moran, L.; Griol, A.; Garcia-Ruperez, J. Bimodal waveguide sensors enabled by subwavelength grating structures. In Integrated Photonics Research, Silicon and Nanophotonics; Optica Publishing Group: Washington, DC, USA, 2020; p. ITu4A–4. [Google Scholar]
- Barth, I.; Conteduca, D.; Reardon, C.; Johnson, S.; Krauss, T.F. Common-path interferometric label-free protein sensing with resonant dielectric nanostructures. Light Sci. Appl. 2020, 9, 96. [Google Scholar] [CrossRef] [PubMed]
- Di Toma, A.; Brunetti, G.; Colapietro, P.; Ciminelli, C. High-resolved near-field sensing by means of dielectric grating with a box-like resonance shape. IEEE Sens. J. 2024, 24, 6045–6053. [Google Scholar] [CrossRef]
- Chien, F.-C.; Lin, C.-Y.; Yih, J.-N.; Lee, K.-L.; Chang, C.-W.; Wei, P.-K.; Sun, C.-C.; Chen, S.-J. Coupled waveguide–surface plasmon resonance biosensor with subwavelength grating. Biosens. Bioelectron. 2007, 22, 2737–2742. [Google Scholar] [CrossRef]
- Piliarik, M.; Vala, M.; Tichy, I.; Homola, J. Compact and low-cost biosensor based on novel approach to spectroscopy of surface plasmons. Biosens. Bioelectron. 2009, 24, 3430–3435. [Google Scholar] [CrossRef]
- Wang, Y.; Dostalek, J.; Knoll, W. Magnetic nanoparticle-enhanced biosensor based on grating-coupled surface plasmon resonance. Anal. Chem. 2011, 83, 6202–6207. [Google Scholar] [CrossRef]
- Ji, L.; Liu, T.; He, G.; Sun, X.; Wang, X.; Yi, Y.; Chen, C.; Wang, F.; Zhang, D. UV-written long-period grating based on long-range surface plasmon-polariton waveguide. IEEE Photon. Technol. Lett. 2016, 28, 633–636. [Google Scholar] [CrossRef]
- Zhang, J.; Khand, I.; Zhang, Q.; Liu, X.; Dostalek, J.; Liedberg, B.; Wang, Y. Lipopolysaccharides detection on a grating-coupled surface plasmon resonance smartphone biosensor. Biosens. Bioelectron. 2018, 99, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Hageneder, S.; Fossati, S.; Ferrer, N.-G.; Gungormez, B.S.; Auer, K.; Dostalek, J. Multi-diffractive grating for surface plasmon biosensors with direct back-side excitation. Opt. Express 2020, 28, 39770–39780. [Google Scholar] [CrossRef] [PubMed]
- Wark, A.W.; Lee, H.J.; Qavi, A.J.; Corn, R.M. Nanoparticle-enhanced diffraction gratings for ultrasensitive surface plasmon biosensing. Anal. Chem. 2007, 79, 6697–6701. [Google Scholar] [CrossRef] [PubMed]
- Tseng, J.-Y.; Lin, M.-H.; Chau, L.-K. Preparation of colloidal gold multilayers with 3-(mercaptopropyl)-trimethoxysilane as a linker molecule. Colloids Surf. A 2001, 182, 239–245. [Google Scholar] [CrossRef]
- Walker, D.S.; Reichert, W.M.; Berry, C.J. Corning 7059, Silicon Oxynitride, and Silicon Dioxide Thin-Film Integrated Optical Waveguides: In Search of Low Loss, Nonfluorescent, Reusable Glass Waveguides. Appl. Spectrosc. 1992, 46, 1437–1441. [Google Scholar] [CrossRef]
- Yang, L.; Saavedra, S.S.; Armstrong, N.R.; Hayes, J. Fabrication and Characterization of Low-Loss, Sol-Gel Planar Waveguides. Anal. Chem. 1994, 66, 1254–1263. [Google Scholar] [CrossRef] [PubMed]
- Krug, H.; Merl, H.; Schmidt, H.J. Fabrication of low-loss planar waveguides and development of integrated optical chemical sensors. Non Cryst. Solids 1992, 147–148, 447–450. [Google Scholar] [CrossRef]
- Coudray, P.; Etienne, P.; Moreau, Y. Integrated optics based on organo-mineral materials. Mater. Sci. Semicond. Process. 2000, 3, 331–337. [Google Scholar] [CrossRef]
- Krug, H.; Tiefensee, F.; Oliveira, P.W.; Schmidt, H. Organic-inorganic composite materials: Optical properties of laser-patterned and protective-coated waveguides. In Sol-Gel Optics II; Proceedings of SPIE; SPIE: Bellingham, WA, USA, 1992; Volume 1758, pp. 448–455. [Google Scholar]
- Zhang, X.; Lu, H.; Souter, A.M.; Zeng, X. Thick UV-patternable hybrid sol-gel films prepared by spin coating. J. Mater. Chem. 2004, 14, 357–361. [Google Scholar] [CrossRef]
- Yoshida, M.; Prasad, P.N. Sol−Gel-Processed SiO2/TiO2/Poly(vinylpyrrolidone) Composite Materials for Optical Waveguides. Chem. Mater. 1996, 8, 235–241. [Google Scholar] [CrossRef]
- Eldada, L.; Shacklette, L.W. Advances in polymer integrated optics. IEEE J. Quantum Electron. 2000, 6, 54–68. [Google Scholar] [CrossRef]
- Yin, X.; Hesselink, L. Goos-Hanchen shift surface plasmon resonance sensor. Appl. Phys. Lett. 2006, 89, 261108. [Google Scholar] [CrossRef]
- Yang, W.; Shao, J.; Zhang, Y.; Zhang, W.; Xu, Y. Highly sensitive Goos–Hanchen shift surface plasmon resonance sensor within selenide allotropes. Opt. Laser Technol. 2024, 174, 110651. [Google Scholar] [CrossRef]
- Lai, N.-S.; Wang, C.-C.; Chiang, H.-L.; Chau, L.-K. Detection of antinuclear antibodies by a colloidal gold modified optical fiber: Comparison with ELISA. Anal. Bioanal. Chem. 2007, 388, 901–907. [Google Scholar] [CrossRef]
- Blonder, R.; Katz, E.; Cohen, Y.; Itzhak, N.; Willner, I. Application of redox enzymes for probing the antigen− antibody association at monolayer interfaces: Development of amperometric immunosensor electrodes. Anal. Chem. 1996, 68, 3151–3157. [Google Scholar] [CrossRef]
- Yang, T.; Jung, S.Y.; Mao, H.; Cremer, P.S. Fabrication of Phospholipid Bilayer-Coated Microchannels for On-Chip Immunoassays. Anal. Chem. 2001, 73, 165–169. [Google Scholar] [CrossRef]
- Li, H.-Y.; Hsu, W.-C.; Liu, K.-C.; Chen, Y.-L.; Chau, L.-K.; Hsieh, S.; Hsieh, W.-H. A low cost, label-free biosensor based on a novel double-sided grating waveguide coupler with sub-surface cavities. Sens. Actuat. B 2015, 206, 371–380. [Google Scholar] [CrossRef]
- Malic, L.; Morton, K.; Clime, L.; Veres, T. All-thermoplastic nanoplasmonic microfluidic device for transmission SPR biosensing. Lab Chip 2013, 13, 798–810. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.-L.; Chang, C.-C.; You, M.-L.; Pan, M.-Y.; Wei, P.-K. Enhancing the surface sensitivity of metallic nanostructures using oblique-angle-induced Fano resonances. Sci. Rep. 2016, 6, 33126. [Google Scholar] [CrossRef]
- Nair, S.; Escobedo, C.; Sabat, R.G. Crossed surface relief gratings as nanoplasmonic biosensors. ACS Sens. 2017, 2, 379–385. [Google Scholar] [CrossRef]
- Wong, M.-S.; Fong, C.-C.; Yang, M. Biosensor measurement of the interaction kinetics between insulin-like growth factors and their binding proteins. Biochim. Biophys. Acta 1999, 1432, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.-C.; Wu, C.-C.; Wang, S.-C.; Chau, L.-K.; Hsieh, W.-H. Using a fiber optic particle plasmon resonance biosensor to determine kinetic constants of antigen–antibody binding reaction. Anal. Chem. 2013, 85, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Ku, Y.-F.; Li, H.-Y.; Hsieh, W.-H.; Chau, L.-K.; Chang, G.-E. Enhanced sensitivity in injection-molded guided-mode-resonance sensors via low-index cavity layers. Opt. Express 2015, 23, 14850–14859. [Google Scholar] [CrossRef] [PubMed]
Figure-of-Merit | Opposite-Side | Same-Side |
---|---|---|
SR (t = 1.0 mm) | 7.8 × 10−4 RIU | 8.3 × 10−4 RIU |
LOD for ant-DNP (t = 1.0 mm) | 5.8 × 10−11 M | 3.2 × 10−11 M |
LOD for ant-DNP (t = 0.05 mm) | 4.4 × 10−12 M | 1.4 × 10−12 M |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, W.-T.; Lin, Y.-C.; Yang, H.-C.; Barshilia, D.; Chen, P.-L.; Huang, F.-C.; Chau, L.-K.; Hsieh, W.-H.; Chang, G.-E. Label-Free Biosensor Based on Particle Plasmon Resonance Coupled with Diffraction Grating Waveguide. Sensors 2024, 24, 5536. https://doi.org/10.3390/s24175536
Hsu W-T, Lin Y-C, Yang H-C, Barshilia D, Chen P-L, Huang F-C, Chau L-K, Hsieh W-H, Chang G-E. Label-Free Biosensor Based on Particle Plasmon Resonance Coupled with Diffraction Grating Waveguide. Sensors. 2024; 24(17):5536. https://doi.org/10.3390/s24175536
Chicago/Turabian StyleHsu, Wei-Ting, Yu-Cheng Lin, Huang-Chin Yang, Devesh Barshilia, Po-Liang Chen, Fu-Chun Huang, Lai-Kwan Chau, Wen-Hsin Hsieh, and Guo-En Chang. 2024. "Label-Free Biosensor Based on Particle Plasmon Resonance Coupled with Diffraction Grating Waveguide" Sensors 24, no. 17: 5536. https://doi.org/10.3390/s24175536
APA StyleHsu, W. -T., Lin, Y. -C., Yang, H. -C., Barshilia, D., Chen, P. -L., Huang, F. -C., Chau, L. -K., Hsieh, W. -H., & Chang, G. -E. (2024). Label-Free Biosensor Based on Particle Plasmon Resonance Coupled with Diffraction Grating Waveguide. Sensors, 24(17), 5536. https://doi.org/10.3390/s24175536