Research of a 0.14 THz Dual-Cavity Parallel Structure Extended Interaction Oscillator
Abstract
:1. Introduction
2. Structural Design and Cold Cavity Analysis
3. PIC Simulation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Booske, J.H.; Dobbs, R.J.; Joye, C.D.; Kory, C.L.; Neil, G.R.; Park, G.S.; Park, J.; Temkin, R.J. Vacuum Electronic High Power Terahertz Sources. IEEE Trans. Terahertz Sci. Technol. 2011, 1, 54–75. [Google Scholar] [CrossRef]
- Siegel, P. Terahertz technology. IEEE Trans. Microw. Theory Tech. 2002, 50, 910–928. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, R.; Wang, Y. Research on a High-Order Mode Multibeam Extended-Interaction Oscillator With Coaxial Structure. IEEE Trans. Plasma Sci. 2020, 48, 1902–1909. [Google Scholar] [CrossRef]
- Chang, Z.; Meng, L.; Li, H.; Wang, B.; Yuan, X.; Xu, C.; Peng, R.; Yin, Y. A High-Efficiency Dual-Cavity Extended Interaction Oscillator. IEEE Trans. Electron Devices 2020, 67, 335–340. [Google Scholar] [CrossRef]
- Sarwar, M.S.; Niu, X.; Zhang, T.; Liu, Y. Design of a Peculiar TM35 Transverse Mode THz Extended Interaction Oscillator for Multibeam kW-Class Operation. IEEE Trans. Plasma Sci. 2024, 52, 707–714. [Google Scholar] [CrossRef]
- Joye, C.D.; Cook, A.M.; Calame, J.P.; Abe, D.K.; Vlasov, A.N.; Chernyavskiy, I.A.; Nguyen, K.T.; Wright, E.L.; Pershing, D.E.; Kimura, T.; et al. Demonstration of a High Power, Wideband 220-GHz Traveling Wave Amplifier Fabricated by UV-LIGA. IEEE Trans. Electron Devices 2014, 61, 1672–1678. [Google Scholar] [CrossRef]
- Li, J.; Wu, Z.; Liu, D.; Wang, W.; Zhao, T.; Zhong, R.; Shi, Z.; Zhang, K.; Duan, Z.; Wei, Y.; et al. Novel 0.22-THz Extended Interaction Oscillator Based on the Four-Sheet-Beam Orthogonal Interconnection Structure. IEEE Trans. Electron Devices 2023, 70, 1917–1922. [Google Scholar] [CrossRef]
- Zu, Y.; Lan, Y.; Yuan, X.; Xu, X.; Chen, Q.; Li, H.; Cole, M.T.; Yin, Y.; Wang, B.; Meng, L.; et al. Research on a Highly Overmoded Slow Wave Circuit for 0.3-THz Extended Interaction Oscillator. IEEE Trans. Electron Devices 2023, 70, 2165–2169. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, S.; Guo, J.; Wang, Z.; Tang, T.; Gong, H.; Lu, Z.; Duan, Z.; Gong, Y. A 0.14 THz Angular Radial Extended Interaction Oscillator. IEEE Trans. Electron Devices 2022, 69, 1468–1473. [Google Scholar] [CrossRef]
- Qing, J.; Niu, X.; Zhang, T.; Liu, Y.; Guo, G.; Li, H. Design and research of a novel structure for extended interaction oscillators. Phys. Plasmas 2022, 29. [Google Scholar] [CrossRef]
- Li, J.; Liu, D.; Ren, R.; Xiao, C.; Shi, Z.; Zhao, T.; Hu, M.; Wei, Y.; Duan, Z.; Gong, Y.; et al. A Novel 2-D Slotted Structure Extended Interaction Oscillator. IEEE Trans. Electron Devices 2023, 70, 2780–2785. [Google Scholar] [CrossRef]
- Qing, J.; Niu, X.; Liu, Y.; Guo, G.; Li, H. Design and Cold Test on the Slow Wave Structure of a Wide-Voltage Tuned and High-Power Extended Interaction Oscillator in W-Band. IEEE Trans. Plasma Sci. 2023, 51, 381–385. [Google Scholar] [CrossRef]
- Xu, C.; Meng, L.; Paoloni, C.; Qin, Y.; Bi, L.; Wang, B.; Li, H.; Yin, Y. A 0.35-THz Extended Interaction Oscillator Based on Overmoded and Bi-Periodic Structure. IEEE Trans. Electron Devices 2021, 68, 5814–5819. [Google Scholar] [CrossRef]
- Qing, J.; Niu, X.; Zhang, T.; Liu, Y.; Guo, G.; Li, H. THz Radiation from a TM51 Mode Sheet Beam Extended Interaction Oscillator With Low Injection. IEEE Trans. Plasma Sci. 2022, 50, 1081–1086. [Google Scholar] [CrossRef]
- Wang, J.; Wan, Y.; Xu, D.; Li, X.; Dai, Z.; Li, H.; Jiang, W.; Wu, Z.; Liu, G.; Yao, Y.; et al. Performance and Experimental Progress of a Compact W-band High Average Power Sheet Beam Extended Interaction Oscillator. IEEE Electron Device Lett. 2023, 44, 144–147. [Google Scholar] [CrossRef]
- Chang, Z.; Shu, G.; Tian, Y.; He, W. A Multimode Extended Interaction Oscillator with Broad Continuous Electric Tuning Range. IEEE Trans. Electron Devices 2022, 69, 3947–3952. [Google Scholar] [CrossRef]
- Chang, Z.; Shu, G.; He, W. An Extended Interaction Oscillator Capable of Continuous Multimode Operation. IEEE Trans. Electron Devices 2021, 68, 6470–6475. [Google Scholar] [CrossRef]
- Liao, J.; Shu, G.; Lin, G.; Lin, J.; Li, Q.; He, J.; Ren, J.; Chang, Z.; Xu, B.; Deng, J.; et al. Study of a 0.3-THz Extended Interaction Oscillator Based on the Pseudospark-Sourced Sheet Electron Beam. IEEE Trans. Plasma Sci. 2023, 51, 2199–2204. [Google Scholar] [CrossRef]
- Bi, L.; Jiang, X.; Qin, Y.; Xu, C.; Wang, B.; Yin, Y.; Li, H.; Meng, L. Power Enhancement of Subterahertz Extended Interaction Oscillator Based on Overmoded Multigap Circuit and Linearly Distributed Two Electron Beams. IEEE Trans. Electron Devices 2022, 69, 792–797. [Google Scholar] [CrossRef]
- He, X.; Yang, X.; Lu, G.; Yang, W.; Wu, F.; Yu, Z.; Jiang, J. Implementation of selective controlling electromagnetically induced transparency in terahertz graphene metamaterial. Carbon 2017, 123, 668–675. [Google Scholar] [CrossRef]
Institution | Frequency | Voltage | Current | Power |
---|---|---|---|---|
(GHz) | (kV) | (A) | (W) | |
CPI | 93.8 | 20.3 | 0.69 | 1400 |
UESTC | 140 | 18 | 1.5 | 661 |
CPI | 140 | / | / | 200 |
UESTC | 220 | 16.6 | 3.2 | 500 |
CPI | 214.5 | 11 | 0.095 | 13.3 |
UESTC | 300 | 14.8 | 0.25 | 250 |
Parameter | Quantity | Value (mm) |
---|---|---|
a1 | Gap depth | 0.42 |
a2 | Coupling cavity width | 1.68 |
a3 | Beam tunnel width | 0.40 |
a4 | Coupling cavity width | 1.68 |
h1 | Beam tunnel height | 2.00 |
h2 | Gap height | 3.00 |
h3 | Coupling cavity height | 1.50 |
h4 | Coupling cavity height | 1.10 |
d | Gap width | 0.22 |
p | Period length | 0.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, C.; Ren, R.; Wu, Z.; Li, Y.; You, Q.; Shi, Z.; Zhang, K.; Chen, X.; Zhan, M.; Liu, D.; et al. Research of a 0.14 THz Dual-Cavity Parallel Structure Extended Interaction Oscillator. Sensors 2024, 24, 5891. https://doi.org/10.3390/s24185891
Xiao C, Ren R, Wu Z, Li Y, You Q, Shi Z, Zhang K, Chen X, Zhan M, Liu D, et al. Research of a 0.14 THz Dual-Cavity Parallel Structure Extended Interaction Oscillator. Sensors. 2024; 24(18):5891. https://doi.org/10.3390/s24185891
Chicago/Turabian StyleXiao, Chuanhong, Ruizhe Ren, Zhenhua Wu, Yijun Li, Qing You, Zongjun Shi, Kaichun Zhang, Xiaoxing Chen, Mingzhou Zhan, Diwei Liu, and et al. 2024. "Research of a 0.14 THz Dual-Cavity Parallel Structure Extended Interaction Oscillator" Sensors 24, no. 18: 5891. https://doi.org/10.3390/s24185891
APA StyleXiao, C., Ren, R., Wu, Z., Li, Y., You, Q., Shi, Z., Zhang, K., Chen, X., Zhan, M., Liu, D., Zhong, R., & Liu, S. (2024). Research of a 0.14 THz Dual-Cavity Parallel Structure Extended Interaction Oscillator. Sensors, 24(18), 5891. https://doi.org/10.3390/s24185891