Application of Hyperspectral Imaging and Multi-Module Joint Hierarchical Residual Network in Seed Cotton Foreign Fiber Recognition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials and Equipment
2.2. Experiment Workflow
2.3. Preprocessing
2.4. Multi-Module Joint Hierarchical Residual Network
2.4.1. Double-Hierarchical Residual Structure
2.4.2. Squeeze-and-Excitation Network Attention
2.5. Model Evaluation Methods
3. Results and Discussion
3.1. Preprocessing
3.1.1. Image Cutting and Label Making
3.1.2. Standardized Processing
3.1.3. MSC Processing
3.1.4. PCA Processing
3.2. Ablation Experiment on Sample 1 and Sample 2
3.3. Model Complexity Analysis
3.4. Optimal Parameter Experiment
3.5. Model Training
3.5.1. Model Parameter Settings
3.5.2. Model Training Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, Z.; Liu, Y. Fourier Transform Infrared Spectroscopic Analysis in Applied Cotton Fiber and Cottonseed Research: A Review. JCS 2021, 25, 167–183. [Google Scholar] [CrossRef]
- Shahriari-Khalaji, M.; Alassod, A.; Nozhat, Z. Cotton-Based Health Care Textile: A Mini Review. Polym. Bull. 2022, 79, 10409–10432. [Google Scholar] [CrossRef]
- Feng, L.; Chi, B.; Dong, H. Cotton Cultivation Technology with Chinese Characteristics Has Driven the 70-Year Development of Cotton Production in China. J. Integr. Agric. 2022, 21, 597–609. [Google Scholar] [CrossRef]
- Tian, J.; Zhang, X.; Yang, Y.; Yang, C.; Xu, S.; Zuo, W.; Zhang, W.; Dong, H.; Jiu, X.; Yu, Y.; et al. How to Reduce Cotton Fiber Damage in the Xinjiang China. Ind. Crops Prod. 2017, 109, 803–811. [Google Scholar] [CrossRef]
- Ning, S.; Zhou, B.; Shi, J.; Wang, Q. Soil Water/Salt Balance and Water Productivity of Typical Irrigation Schedules for Cotton under Film Mulched Drip Irrigation in Northern Xinjiang. Agric. Water Manag. 2021, 245, 106651. [Google Scholar] [CrossRef]
- Wang, K.; Su, L.; Wang, Q. Cotton Growth Model under Drip Irrigation with Film Mulching: A Case Study of Xinjiang, China. Agron. J. 2021, 113, 2417–2436. [Google Scholar] [CrossRef]
- Chen, Y.J.; Wu, T.R.; Shi, S.W.; Zhao, B.; Yang, S.H. Review of cotton foreign fiber detection method using optical imaging. Laser Optoelectron. Prog. 2021, 58, 1600007. [Google Scholar] [CrossRef]
- Dang, F.; Chen, D.; Lu, Y.; Li, Z. YOLOWeeds: A Novel Benchmark of YOLO Object Detectors for Multi-Class Weed Detection in Cotton Production Systems. Comput. Electron. Agric. 2023, 205, 107655. [Google Scholar] [CrossRef]
- Lin, D.; Cheng, C. Research on Flower Image Recognition Algorithm. In Proceedings of the 2022 International Conference on Big Data, Information and Computer Network (BDICN), Sanya, China, 20–22 January 2022; IEEE: New York, NY, USA, 2022; pp. 646–649. [Google Scholar]
- Zhang, Y.; Ma, B.; Hu, Y.; Li, C.; Li, Y. Accurate Cotton Diseases and Pests Detection in Complex Background Based on an Improved YOLOX Model. Comput. Electron. Agric. 2022, 203, 107484. [Google Scholar] [CrossRef]
- Apacionado, B.V.; Ahamed, T. Sooty Mold Detection on Citrus Tree Canopy Using Deep Learning Algorithms. Sensors 2023, 23, 8519. [Google Scholar] [CrossRef]
- Jaiswal, G.; Rani, R.; Mangotra, H.; Sharma, A. Integration of Hyperspectral Imaging and Autoencoders: Benefits, Applications, Hyperparameter Tunning and Challenges. Comput. Sci. Rev. 2023, 50, 100584. [Google Scholar] [CrossRef]
- Lone, Z.A.; Pais, A.R. Object Detection in Hyperspectral Images. Digit. Signal Process. 2022, 131, 103752. [Google Scholar] [CrossRef]
- Liu, X.; Gong, W.; Shang, L.; Li, X.; Gong, Z. Remote Sensing Image Target Detection and Recognition Based on YOLOv5. Remote Sens. 2023, 15, 4459. [Google Scholar] [CrossRef]
- Li, H.; Chen, L.; Yao, Z.; Li, N.; Long, L.; Zhang, X. Intelligent Identification of Pine Wilt Disease Infected Individual Trees Using UAV-Based Hyperspectral Imagery. Remote Sens. 2023, 15, 3295. [Google Scholar] [CrossRef]
- Zhang, W.; Li, X.; Zhao, L. A Fast Hyperspectral Feature Selection Method Based on Band Correlation Analysis. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1750–1754. [Google Scholar] [CrossRef]
- Ou, X.; Wu, M.; Tu, B.; Zhang, G.; Li, W. Multi-Objective Unsupervised Band Selection Method for Hyperspectral Images Classification. IEEE Trans. Image Process. 2023, 32, 1952–1965. [Google Scholar] [CrossRef]
- Kang, X.; Xiang, X.; Li, S.; Benediktsson, J.A. PCA-Based Edge-Preserving Features for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 7140–7151. [Google Scholar] [CrossRef]
- Awni, M.; Khalil, M.I.; Abbas, H.M. Offline Arabic Handwritten Word Recognition: A Transfer Learning Approach. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 9654–9661. [Google Scholar] [CrossRef]
- Kaur, R.; Singh, S. A Comprehensive Review of Object Detection with Deep Learning. Digit. Signal Process. 2023, 132, 103812. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, Y.; Jia, W.; Ji, Z. DLNet: Accurate Segmentation of Green Fruit in Obscured Environments. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 7259–7270. [Google Scholar] [CrossRef]
- Diaz-Martinez, V.; Orozco-Sandoval, J.; Manian, V.; Dhatt, B.K.; Walia, H. A Deep Learning Framework for Processing and Classification of Hyperspectral Rice Seed Images Grown under High Day and Night Temperatures. Sensors 2023, 23, 4370. [Google Scholar] [CrossRef] [PubMed]
- Ni, C.; Li, Z.; Zhang, X.; Sun, X.; Huang, Y.; Zhao, L.; Zhu, T.; Wang, D. Online Sorting of the Film on Cotton Based on Deep Learning and Hyperspectral Imaging. IEEE Access 2020, 8, 93028–93038. [Google Scholar] [CrossRef]
- Du, Y.H.; Li, X.; Ren, W.; Zuo, H. Application of Near-Infrared Spectroscopy and CNN-TCN for the Identification of Foreign Fibers in Cotton Layers. J. Nat. Fibers 2023, 20, 2172638. [Google Scholar] [CrossRef]
- Xue, Z.; Yu, X.; Liu, B.; Tan, X.; Wei, X. HResNetAM: Hierarchical Residual Network with Attention Mechanism for Hyperspectral Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 3566–3580. [Google Scholar] [CrossRef]
- Collins, T.; Maktabi, M.; Barberio, M.; Bencteux, V.; Jansen-Winkeln, B.; Chalopin, C.; Marescaux, J.; Hostettler, A.; Diana, M.; Gockel, I. Automatic Recognition of Colon and Esophagogastric Cancer with Machine Learning and Hyperspectral Imaging. Diagnostics 2021, 11, 1810. [Google Scholar] [CrossRef]
- Huang, J.; He, H.; Lv, R.; Zhang, G.; Zhou, Z.; Wang, X. Non-Destructive Detection and Classification of Textile Fibres Based on Hyperspectral Imaging and 1D-CNN. Anal. Chim. Acta 2022, 1224, 340238. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, L.; Yu, X.; Zhang, Y.; Cui, J.; Ni, C.; Zhang, L. Intelligent Identification of Film on Cotton Based on Hyperspectral Imaging and Convolutional Neural Network. Sci. Prog. 2022, 105, 00368504221137461. [Google Scholar] [CrossRef] [PubMed]
- Hong, D.; Han, Z.; Yao, J.; Gao, L.; Zhang, B.; Plaza, A.; Chanussot, J. SpectralFormer: Rethinking Hyperspectral Image Classification with Transformers. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5518615. [Google Scholar] [CrossRef]
- Zhu, X.; Bi, Y.; Du, J.; Gao, X.; Zhang, T.; Pi, W.; Zhang, Y.; Wang, Y.; Zhang, H. Research on Deep Learning Method Recognition and a Classification Model of Grassland Grass Species Based on Unmanned Aerial Vehicle Hyperspectral Remote Sensing. Grassl. Sci. 2023, 69, 3–11. [Google Scholar] [CrossRef]
- Gao, S.-H.; Cheng, M.-M.; Zhao, K.; Zhang, X.-Y.; Yang, M.-H.; Torr, P. Res2Net: A New Multi-Scale Backbone Architecture. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 652–662. [Google Scholar] [CrossRef]
- Li, S.; Zhu, X.; Bao, J. Hierarchical Multi-Scale Convolutional Neural Networks for Hyperspectral Image Classification. Sensors 2019, 19, 1714. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.; Du, P.-J. Hyperspectral remote sensing image classification based on support vector machine. J. Infrared Millim. Waves 2008, 27, 123–128. [Google Scholar] [CrossRef]
- Cozzolino, D.; Williams, P.J.; Hoffman, L.C. An Overview of Pre-Processing Methods Available for Hyperspectral Imaging Applications. Microchem. J. 2023, 193, 109129. [Google Scholar] [CrossRef]
- Fan, J.; Zhang, X.; Chen, Y.; Sun, C. Classification of Hyperspectral Image by Preprocessing Method Based Relation Network. Int. J. Remote Sens. 2023, 44, 6929–6953. [Google Scholar] [CrossRef]
- Liu, Y.; Pan, X.; Liu, J.; Zhang, S.; Yan, W. Research on Near-Ground Forage Hyperspectral Imagery Classification Based on Fusion Preprocessing Process. Int. J. Digit. Earth 2023, 16, 4707–4725. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; IEEE: New York, NY, USA, 2016; pp. 770–778. [Google Scholar]
- Fan, C.; Xue, J.; Tao, J.; Yi, J.; Wang, C.; Zheng, C.; Lv, Z. Spatial Reconstructed Local Attention Res2Net with F0 Subband for Fake Speech Detection. Neural Netw. 2024, 175, 106320. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E. Squeeze-and-Excitation Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 2011–2023. [Google Scholar] [CrossRef]
Layer Name | Output Shape | Convolution Kernel | Step | Padding |
---|---|---|---|---|
Input | 9 × 9 × 16 | |||
Conv0 | 7 × 7 × 64 (1) | 3 × 3 × 16 (1) | 1 | (0,0) |
Conv1 | 7 × 7 × 64 (6) | 3 × 3 × 64 (6) | 1 | (1,1) |
Conv2 | 7 × 7 × 64 (6) | 3 × 3 × 64 (6) | 1 | (1,1) |
Conv3 | 7 × 7 × 64 (6) | 3 × 3 × 64 (6) | 1 | (1,1) |
Conv4 | 7 × 7 × 64 (6) | 3 × 3 × 64 (6) | 1 | (1,1) |
Conv6 | 7 × 7 × 64 (6) | 3 × 3 × 64 (6) | 1 | (1,1) |
Conv7 | 7 × 7 × 64 (6) | 1 × 1 × 64 (6) | 1 | (1,1) |
SENet | 7 × 7 × 128 | |||
Avg_pool | 1 × 1 × 128 | 7 × 7 × 128 | ||
Output | Class (9) |
Method | Sample 1 | Sample 2 | ||
---|---|---|---|---|
AA | OA | AA | OA | |
The first hierarchical residual structure in the DHR structure | 98.1653 | 98.1888 | 97.0243 | 97.3698 |
Single multi-branch residual structure replaced by DHR | 97.6769 | 98.2116 | 96.7951 | 96.129 |
DHR | 98.209 | 98.3196 | 97.8793 | 98.2809 |
DHR + SENet | 98.4296 | 98.43 | 98.0765 | 98.6844 |
Model | ResNet-18 | 2D-CNN | 3D-CNN | HResNet | MJHResNet |
---|---|---|---|---|---|
Parameters (M) | 11.4 | 2.16 | 2.43 | 0.46 | 1.06 |
FLOPs (G) | 561.5 | 41.3 | 40.6 | 22.8 | 33.6 |
Group | Epoch_a | Epoch_b | Learning Rate_a | Learning Rate_b | AA | OA |
---|---|---|---|---|---|---|
1 | 70 | 30 | 1.0 | 1.0 | 98.21% | 99.03% |
2 | 70 | 30 | 0.1 | 0.1 | 98.77% | 99.21% |
3 | 70 | 30 | 0.01 | 0.01 | 98.62% | 99.12% |
4 | 70 | 30 | 1.0 | 0.1 | 98.98% | 99.37% |
5 | 70 | 30 | 1.0 | 0.01 | 98.83% | 99.21% |
6 | 70 | 30 | 0.1 | 0.01 | 98.67% | 99.28% |
Film | Cotton | Paper | Black Film | White Rope | Red Rope | Transparent Rope | Foam Board | Background | AA | OA | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SVM | Recall | 86.8235 | 98.0455 | 98.6301 | 98.3645 | 95.2278 | 96.7608 | 84.9696 | 97.0863 | 98.8814 | 94.9766 | 97.903 |
Precision | 90.9006 | 97.7881 | 98.9456 | 98.7808 | 95.8998 | 95.9646 | 87.5719 | 95.2839 | 98.7247 | |||
ResNet-18 | Recall | 96.1599 | 97.3134 | 97.4137 | 97.2909 | 96.3791 | 96.6651 | 94.261 | 96.9235 | 97.4283 | 96.6483 | 97.2988 |
Precision | 93.9774 | 97.2228 | 98.3318 | 97.43 | 94.7973 | 90.0015 | 86.2653 | 96.3892 | 97.8117 | |||
2D-CNN | Recall | 95.8156 | 97.2287 | 97.5728 | 97.3524 | 96.4459 | 96.3619 | 93.6848 | 96.9339 | 97.4663 | 96.5403 | 97.2641 |
Precision | 93.3931 | 97.237 | 97.9277 | 97.8681 | 96.173 | 91.9598 | 88.2743 | 96.4427 | 97.7488 | |||
Fast3D-CNN | Recall | 92.458 | 96.783 | 97.334 | 96.992 | 96.613 | 96.761 | 90.949 | 96.276 | 97.174 | 95.7043 | 96.7677 |
Precision | 89.9768 | 96.6984 | 97.952 | 97.0584 | 92.9971 | 92.2843 | 84.6436 | 95.5835 | 97.6 | |||
Hierarchical ResNet | Recall | 96.2931 | 97.2018 | 97.5367 | 97.1944 | 96.5627 | 95.6119 | 94.3426 | 97.1903 | 97.4518 | 96.5984 | 97.2646 |
Precision | 94.3262 | 97.2587 | 97.9325 | 97.8863 | 95.1027 | 93.2897 | 88.7803 | 96.3028 | 97.6254 | |||
SpectralFormer | Recall | 97.6044 | 98.7398 | 98.7538 | 98.8123 | 97.3135 | 97.6703 | 95.3362 | 96.3519 | 98.6456 | 97.692 | 98.6204 |
Precision | 96.0401 | 98.4894 | 99.3733 | 98.7755 | 95.2474 | 95.9705 | 95.0215 | 98.1611 | 99.0187 | |||
MJHResNet | Recall | 98.386 | 99.296 | 99.449 | 99.581 | 98.265 | 98.5 | 96.107 | 99.453 | 99.373 | 98.7122 | 99.2835 |
Precision | 98.097 | 99.2573 | 99.5542 | 99.3038 | 98.0683 | 97.8288 | 96.5851 | 98.809 | 99.4507 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhang, L.; Guo, Z.; Zhang, R. Application of Hyperspectral Imaging and Multi-Module Joint Hierarchical Residual Network in Seed Cotton Foreign Fiber Recognition. Sensors 2024, 24, 5892. https://doi.org/10.3390/s24185892
Zhang Y, Zhang L, Guo Z, Zhang R. Application of Hyperspectral Imaging and Multi-Module Joint Hierarchical Residual Network in Seed Cotton Foreign Fiber Recognition. Sensors. 2024; 24(18):5892. https://doi.org/10.3390/s24185892
Chicago/Turabian StyleZhang, Yunlong, Laigang Zhang, Zhijun Guo, and Ran Zhang. 2024. "Application of Hyperspectral Imaging and Multi-Module Joint Hierarchical Residual Network in Seed Cotton Foreign Fiber Recognition" Sensors 24, no. 18: 5892. https://doi.org/10.3390/s24185892
APA StyleZhang, Y., Zhang, L., Guo, Z., & Zhang, R. (2024). Application of Hyperspectral Imaging and Multi-Module Joint Hierarchical Residual Network in Seed Cotton Foreign Fiber Recognition. Sensors, 24(18), 5892. https://doi.org/10.3390/s24185892