The Zero-Velocity Correction Method for Pipe Jacking Automatic Guidance System Based on Fiber Optic Gyroscope
Abstract
:1. Introduction
2. Moving Characteristic Analysis for Pipe Jacking
3. The Zero-Velocity Correction Model
3.1. The Kalman Filter Model Based on Zero-Velocity Correction
3.2. Zero-Velocity Detection Algorithm Model
4. Experiment and Analysis
4.1. Simulation Experiment
4.1.1. Experimental Platform Setup
4.1.2. Experimental Results Analysis
4.2. Field Experiment
4.2.1. Experimental Platform
4.2.2. Experimental Processing Results
5. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, H.; Lei, X.; Wang, C.; Liao, W.; Kang, A.; Huang, H.; Ding, X.; Chen, Y.; Zhang, X. A coordinated drainage and regulation model of urban water systems in China: A case study in Fuzhou city. River 2023, 2, 5–20. [Google Scholar] [CrossRef]
- Schoen, M.; Hölter, R.; Boldini, D.; Lavasan, A.A. Application of optimal experiment design method to detect the ideal sensor positions: A case study of Milan metro line 5. Tunneling Undergr. Space Technol. 2022, 130, 104723. [Google Scholar] [CrossRef]
- Zhang, P.; Ma, B.; Zeng, C.; Xie, H.; Li, X.; Wang, D. Key techniques for the largest curved pipe jacking roof to date: A case study of Gongbei tunnel. Tunneling Undergr. Space Technol. 2016, 59, 134–145. [Google Scholar] [CrossRef]
- Boguspayev, N.; Akhmedov, D.; Raskaliyev, A.; Kim, A.; Sukhenko, A. A Comprehensive Review of GNSS/INS Integration Techniques for Land and Air Vehicle Applications. Appl. Sci. 2023, 13, 4819. [Google Scholar] [CrossRef]
- El-Sheimy, N.; Youssef, A. Inertial sensors technologies for navigation applications: State of the art and future trends. Satell. Navig. 2020, 1, 2. [Google Scholar] [CrossRef]
- Ma, M.; Song, Q.; Li, Y.; Zhou, Z. A Zero Velocity Intervals Detection Algorithm Based on Sensor Fusion for Indoor Pedestrian Navigation. In Proceedings of the 2017 IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chengdu, China, 15–17 December 2017. [Google Scholar]
- Foxlin, E. Pedestrian Tracking with Shoe-Mounted Inertial Sensors. IEEE Comput. Graph. Appl. 2005, 25, 38–46. [Google Scholar] [CrossRef]
- Meng, X.; Sun, S.; Ji, L.; Wu, J.; Wong, W.-C. Estimation of Center of Mass Displacement Based on Gait Analysis. In Proceedings of the 2011 International Conference on Body Sensor Networks, Dallas, TX, USA, 23–25 May 2011. [Google Scholar]
- Suresh, R.P.; Sridhar, V.; Pramod, J.; Talasila, V. Zero Velocity Potential Update (ZUPT) as a Correction Technique. In Proceedings of the 2018 3rd International Conference On Internet of Things: Smart Innovation and Usages (IoT-SIU), Bhimtal, India, 23–24 February 2018. [Google Scholar]
- Wahlström, J.; Skog, I. Fifteen Years of Progress at Zero Velocity: A Review. IEEE Sens. J. 2021, 21, 1139–1151. [Google Scholar] [CrossRef]
- Li, J.; Zhou, X.; Qiu, S.; Mao, Y.; Wang, Z.; Loo, C.K.; Liu, X. Learning-Based Stance Phase Detection and Multisensor Data Fusion for ZUPT-Aided Pedestrian Dead Reckoning System. IEEE Internet Things J. 2024, 11, 5899–5911. [Google Scholar] [CrossRef]
- Wagstaff, B.; Peretroukhin, V.; Kelly, J. Improving Foot-Mounted Inertial Navigation Through Real-Time Motion Classification. In Proceedings of the 2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sapporo, Japan, 18–21 September 2017. [Google Scholar]
- Liu, X.; Li, N.; Zhang, Y. A Novel Adaptive Zero Velocity Detection Algorithm Based on Improved General Likelihood Ratio Test Detector. IEEE Sens. J. 2022, 22, 24479–24492. [Google Scholar] [CrossRef]
- Godha, S.; Lachapelle, G.; Cannon, M.E. Integrated GPS/INS System for Pedestrian Navigation in a Signal Degraded Environment. In Proceedings of the 19th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2006), Fort Worth, TX, USA, 26–29 September 2006. [Google Scholar]
- Zhang, W.; Li, X.; Wei, D.; Ji, X.; Yuan, H. A foot-mounted PDR system based on IMU/EKF + HMM + ZUPT + ZARU + HDR + compass algorithm. In Proceedings of the 2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sapporo, Japan, 18–21 September 2017. [Google Scholar]
- Abdulrahim, K.; Moore, T. Adaptive Cardinal Heading Aided for Low Cost Foot-Mounted Inertial Pedestrian Navigation. Int. J. Integr. Eng. 2021, 13, 29–39. [Google Scholar] [CrossRef]
- Ren, M.; Pan, K.; Liu, Y.; Guo, H.; Zhang, X.; Wang, P. A Novel Pedestrian Navigation Algorithm for a Foot-Mounted Inertial-Sensor-Based System. Sensors 2016, 16, 139. [Google Scholar] [CrossRef]
- Benoussaad, M.; Sijobert, B.; Mombaur, K. Robust Foot Clearance Estimation Based on the Integration of Foot-Mounted IMU Acceleration Data. Sensors 2016, 16, 12. [Google Scholar] [CrossRef]
- Kuang, J.; Xia, D.; Liu, T.; Chen, Q.; Niu, X. Shin-INS: A Shin-Mounted IMU-based Inertial Navigation System for Pedestrian. IEEE Sens. J. 2023, 23, 25760–25769. [Google Scholar] [CrossRef]
- Wang, Y.; Chernyshoff, A.; Shkel, A.M. Error Analysis of ZUPT-Aided Pedestrian Inertial Navigation. In Proceedings of the 2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Nantes, France, 24–27 September 2018. [Google Scholar]
- Skog, I.; Handel, P.; Nilsson, J.-O.; Rantakokko, J. Zero-Velocity Detection—An Algorithm Evaluation. IEEE Trans. Biomed. Eng. 2010, 57, 2657–2666. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Zhou, W.; Tang, W.; Zheng, X.; Peng, A.; Zheng, H. A 3D indoor positioning system based on low-cost MEMS sensors. Simul. Model. Pract. Theory 2016, 65, 45–56. [Google Scholar] [CrossRef]
- Guo, H.; Uradzinski, M.; Yin, H.; Yu, M. Indoor positioning based on foot-mounted IMU. Bull. Pol. Acad. Sci. Tech. Sci. 2015, 63, 629–634. [Google Scholar] [CrossRef]
- Jiménez, A.R.; Seco, F.; Prieto, J.C. Indoor Pedestrian Navigation using an INS/EKF framework for Yaw Drift Reduction and a Foot-mounted IMU. In Proceedings of the 7th Workshop on Positioning, Navigation and Communication 2010 (WPNC 2010), Dresden, Germany, 11–12 March 2010. [Google Scholar]
- Tian, X.; Chen, J.; Han, Y.; Shang, J.; Li, N. A novel zero velocity interval detection algorithm for self-contained pedestrian navigation system with inertial sensors. Sensors 2016, 16, 1578. [Google Scholar] [CrossRef]
- Wang, Y.; Shkel, A.M. Adaptive Threshold for Zero-Velocity Detector in ZUPT-Aided Pedestrian Inertial Navigation. IEEE Sens. Lett. 2019, 3, 7002304. [Google Scholar] [CrossRef]
- Wahlström, J.; Skog, I.; Gustafsson, F.; Markham, A.; Trigoni, N. Zero-Velocity Detection—A Bayesian Approach to Adaptive Thresholding. IEEE Sens. Lett. 2019, 3, 7000704. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, X.; Tian, X.; Zhou, L.; Li, Y. An Adaptive Zero-Velocity Interval Detector Using Instep-Mounted Inertial Measurement Unit. IEEE Trans. Instrum. Meas. 2021, 70, 8502013. [Google Scholar] [CrossRef]
- Li, H.; Liu, H.; Li, Z.; Li, C.; Meng, Z.; Gao, N.; Zhang, Z. Adaptive Threshold-Based ZUPT for Single IMU-Enabled Wearable Pedestrian Localization. IEEE Internet Things J. 2023, 10, 11749–11760. [Google Scholar] [CrossRef]
- Chen, Z.; Pan, X. A Novel Zero-velocity Detector for Pedestrian Inertial Navigation based on Deep Learning. In Proceedings of the 2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP), Xi’an, China, 9–11 April 2021. [Google Scholar]
- Yang, M.; Zhu, R.; Xiao, Z.; Yan, B. Symmetrical-Net: Adaptive Zero Velocity Detection for ZUPT-Aided Pedestrian Navigation System. IEEE Sens. J. 2022, 22, 5075–5085. [Google Scholar] [CrossRef]
- Wei, R.; Xu, H.; Yang, M.; Yu, X.; Xiao, Z.; Yan, B. Real-Time Pedestrian Tracking Terminal Based on Adaptive Zero Velocity Update. Sensors 2021, 21, 3808. [Google Scholar] [CrossRef] [PubMed]
- Wagstaff, B.; Kelly, J. LSTM-Based Zero-Velocity Detection for Robust Inertial Navigation. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN’18), Nantes, France, 24–27 September 2018. [Google Scholar]
Gyroscope | Accelerometer | ||
---|---|---|---|
Parameters | Value | Parameters | Value |
Measurement Range (deg/s) | ±1000 | Measurement Range (g) | ±45 |
Bias Stability (°/h) | 0.5 | Bias Stability (mg) | 1 |
Bias Repeatability (°/h) | 0.5 | Bias Repeatability (mg) | 1 |
Random Walk () | ≤0.05 | Scale Factor Repeatability (ppm) | ≤100 |
Scale Factor Repeatability (ppm ) | ≤100 |
Zero-Velocity Detector | Distance Estimation/m | Position Relative Error/m | Relative Error Rate/% | Accuracy/% |
---|---|---|---|---|
MV | 33.08 | 3.47 | 9.49 | 90.51 |
ARE | 35.17 | 1.38 | 3.78 | 96.22 |
GLRT | 33.83 | 2.72 | 7.44 | 92.56 |
TCZVD | 35.84 | 0.71 | 1.94 | 98.06 |
Zero-Velocity Detector | Distance Estimation/m | Position Relative Error/m | Relative Error Rate/% | Accuracy/% |
---|---|---|---|---|
MV | 31.74 | 3.82 | 10.74 | 89.26 |
ARE | 34.00 | 1.56 | 4.39 | 95.61 |
GLRT | 33.32 | 2.24 | 6.30 | 93.70 |
TCZVD | 34.71 | 0.85 | 2.39 | 97.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Wang, L.; Zu, Y. The Zero-Velocity Correction Method for Pipe Jacking Automatic Guidance System Based on Fiber Optic Gyroscope. Sensors 2024, 24, 5911. https://doi.org/10.3390/s24185911
Zhang W, Wang L, Zu Y. The Zero-Velocity Correction Method for Pipe Jacking Automatic Guidance System Based on Fiber Optic Gyroscope. Sensors. 2024; 24(18):5911. https://doi.org/10.3390/s24185911
Chicago/Turabian StyleZhang, Wenbo, Lu Wang, and Yutong Zu. 2024. "The Zero-Velocity Correction Method for Pipe Jacking Automatic Guidance System Based on Fiber Optic Gyroscope" Sensors 24, no. 18: 5911. https://doi.org/10.3390/s24185911
APA StyleZhang, W., Wang, L., & Zu, Y. (2024). The Zero-Velocity Correction Method for Pipe Jacking Automatic Guidance System Based on Fiber Optic Gyroscope. Sensors, 24(18), 5911. https://doi.org/10.3390/s24185911