Design and Evaluation of Real-Time Data Storage and Signal Processing in a Long-Range Distributed Acoustic Sensing (DAS) Using Cloud-Based Services
Abstract
:1. Introduction
1.1. DAS Sensing Principle
1.2. Measurements in a Distributed Acoustic Sensing
1.3. Challenges of DAS Long-Range Sensing
1.4. DynamoDB
1.5. Cloud Computing and CloudSim
2. Schematic of System for Sending DAS Data to AWS DynamoDB and Signal Processing with CloudSim
2.1. Scheme Design for Big Data Transmission to AWS DynamoDB: Testing AWS to Distributed Acoustic Sensor Integration
2.2. Design of a Signal-Processing Scheme in a Distributed Acoustic Sensor Using CloudSim
3. Results and Discussions
3.1. Evaluation of Storage Times for DAS Data Using Amazon DynamoDB
3.2. Evaluation of Computation Times of Signal Processing in a DAS Using CloudSim
3.3. Evaluation of Different Statistical Characteristics of Signal Processing in a DAS Using CloudSim
3.4. Evaluation of Scalability of Signal Processing in a DAS Using CloudSim
3.5. Evaluation of the Effect of Different Parameters of VM on Computation Times of Signal Processing in a DAS Using CloudSim
3.6. Cost Analysis for Computation Time and Computation Distance of Fiber of Signal Processing in a DAS Using CloudSim
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AWS | Amazon Web Services |
DAS | Distributed Acoustic Sensing |
DB | Data base |
FBG | Fiber Bragg Grating |
FFT | Fast Fourier Transform |
IaaS | Cloud Infrastructure as a service |
IOT | Internet of Things |
MI | Million Instruction |
MIPS | Million Instruction Per Second |
NoSQL | Not only SQL |
OTDR | Optical Time Domain Reflectometer |
PaaS | Cloud Platform as service |
PE | Processing Elements |
RBS | Rayleigh back-scattering |
RTT | Round-Trip Time |
SaaS | Cloud software as a service |
SNR | Signal-to-Noise Ratio |
SQL | Sequential Query Language |
SWI | Swept Wavelength Interferometry |
VM | Virtual Machine |
References
- Lin, W.; Zhang, C.; Li, L.; Liang, S. Review on development and applications of fiber-optic sensors. In Proceedings of the 2012 Symposium on Photonics and Optoelectronics, Shanghai, China, 21–23 May 2012; pp. 1–4. [Google Scholar]
- Bublin, M. Event Detection for Distributed Acoustic Sensing: Combining Knowledge-Based, Classical Machine Learning, and Deep Learning Approaches. Sensors 2021, 21, 7527. [Google Scholar] [CrossRef]
- Pierce, S.; MacLean, A.; Culshaw, B. Optical frequency domain reflectometry for interrogation of microbend based optical fibre sensors. In Proceedings of the SPIE’s 7th Annual International Symposium on Smart Structures and Materials, Newport Beach, CA, USA, 13 June 2000. [Google Scholar]
- Imahama, M.; Koyamada, Y. Restorability of Rayleigh Backscatter Traces Measured by Coherent OTDR with Precisely Frequency-Controlled Light Source. IEICE Trans. Commun. 2008, E91-B, 1722–1726. [Google Scholar]
- Chang, L.; Chen, Q. Characterization of Optical Components Using OTDR. Opt. Eng. 2016, 55, 105105. [Google Scholar]
- Lee, H.; Kim, S. Quality Assurance Techniques for Fiber Optic Networks. Fiber Opt. Rev. 2017, 25, 56–63. [Google Scholar]
- Smith, J.; Jones, A. Principles and Applications of Distributed Acoustic Sensing Using Rayleigh back-scattering. J. Light. Technol. 2020, 38, 2405–2420. [Google Scholar]
- Muanenda, Y.; Oton, C.J.; Faralli, S.; Di Pasquale, F. A ϕ-OTDR Sensor for High-Frequency Distributed Vibration Measurements with Minimal Post-Processing. In Proceedings of the 19th Italian National Conference on Photonic Technologies, Padua, Italy, 11–18 June 2017. [Google Scholar]
- Zhang, H.; Wang, L. Advancements in Distributed Acoustic Sensors for Structural Health Monitoring. Sens. J. 2019, 19, 1830–1845. [Google Scholar]
- Wang, Z.; Lu, B.; Ye, Q.; Cai, H. Recent Progress in Distributed Fiber Acoustic Sensing with ϕ-OTDR. Sensors 2020, 20, 6594. [Google Scholar] [CrossRef]
- Pan, Z.; Liang, K.; Ye, Q.; Cai, H.; Qu, R.; Fang, Z. Phase-sensitive OTDR system based on digital coherent detection. In Proceedings of the Asia Communications and Photonics Conference and Exhibition, Shanghai, China, 13–16 November 2011; p. 83110S. [Google Scholar]
- Wang, Y.; Liu, Z. Advancements in OTDR Technology: A Review. J. Opt. Commun. Netw. 2021, 13, 56–71. [Google Scholar]
- Smith, P.; Johnson, R. Advancements in OTDR Technology for Fiber Network Maintenance. In Proceedings of the Optical Fiber Communication Conference (OFC), San Diego, CA, USA, 8–12 March 2020. Paper Th3G.2. [Google Scholar]
- Park, J.; Taylor, H.F. Fiber Optic Intrusion Sensor using Coherent Optical Time Domain Reflectometer. Jpn. J. Appl. Phys. 2003, 42, 3481–3482. [Google Scholar] [CrossRef]
- Chen, S.; Liu, M. Distributed Acoustic Sensing in Oil and Gas Industry. Oil Gas Sci. Technol. 2021, 76, 95–110. [Google Scholar]
- Shi, Y.; Feng, H.; Zeng, Z. A Long Distance Phase-Sensitive Optical Time Domain Reflectometer with Simple Structure and High Locating Accuracy. Sensors 2015, 15, 21957–21970. [Google Scholar] [CrossRef]
- Linze, N.; Megret, P.; Wuilpart, M. Development of an Intrusion Sensor Based on a Polarization-OTDR System. IEEE Sens. J. 2012, 12, 3005–3009. [Google Scholar] [CrossRef]
- Healey, P. Fading in heterodyne OTDR. Electron. Lett. 1984, 20, 30–32. [Google Scholar] [CrossRef]
- Koyamada, Y.; Imahama, M.; Kubota, K.; Hogari, K. Fiber-Optic Distributed Strain and Temperature Sensing With Very High Measurand Resolution Over Long Range Using Coherent OTDR. J. Light. Technol. 2009, 27, 1142–1146. [Google Scholar] [CrossRef]
- Patel, R.; Gupta, A. Signal Processing Techniques for OTDR Data Interpretation. Signal Process. J. 2018, 30, 203–215. [Google Scholar]
- Humane, P.; Varshapriya, J.N. Simulation of cloud infrastructure using CloudSim simulator: A practical approach for researchers. In Proceedings of the 2015 International Conference on Smart Technologies and Management for Computing, Communication, Controls, Energy and Materials (ICSTM), Avadi, India, 6–8 May 2015; pp. 207–211. [Google Scholar] [CrossRef]
- Jeon, H.; Cho, C.; Shin, S.; Yoon, S. A CloudSim-Extension for Simulating Distributed Functions-as-a-Service. In Proceedings of the 2019 20th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT), Gold Coast, QLD, Australia, 5–7 December 2019; pp. 386–391. [Google Scholar] [CrossRef]
- Mehmi, S.; Verma, H.K.; Sangal, A.L. Simulation modeling of cloud computing for smart grid using CloudSim. J. Electr. Syst. Inf. Technol. 2017, 4, 159–172. [Google Scholar] [CrossRef]
- Del-Pozo-Puñal, E.; García-Carballeira, F.; Camarmas-Alonso, D. A scalable simulator for cloud, fog and edge computing platforms with mobility support. Future Gener. Comput. Syst. 2023, 144, 117–130. [Google Scholar] [CrossRef]
- Samuel, J.R.; Singh, J.; Mehrotra, S.; Baiju, B.V. Classification and Analysis of Issues Faced by Open Source Simulation Software in the Field of Fog and Edge Computing. In Proceedings of the 2023 International Conference on Next Generation Electronics (NEleX), Vellore, India, 14–16 December 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Ghasemzadeh, M.; Aghdasi, H.S.; Saeedvand, S. Edge Server Placement and Allocation Optimization: A Tradeoff for Enhanced Performance. Cluster Comput. 2024, 27, 5783–5797. [Google Scholar] [CrossRef]
- Alfredo, A.L.; Fernandez-Lopez, A. Fiber Optic Distributed Sensing. J. Light. Technol. 2014, 7, 409–417. [Google Scholar]
- He, Z.; Liu, Q. Optical fiber distributed acoustic sensors: A review. J. Light. Technol. 2021, 39, 3671–3686. [Google Scholar] [CrossRef]
- Garcia, R.; Martinez, E. Emerging Trends in Distributed Acoustic Sensing: Challenges and Opportunities. IEEE Sens. J. 2022, 22, 1500–1515. [Google Scholar]
- Muanenda, Y. Recent Advances in Distributed Acoustic Sensing Based on Phase-Sensitive Optical Time Domain Reflectometry. J. Sensors 2018, 2018, 3897873. [Google Scholar] [CrossRef]
- Muanenda, Y.; Faralli, S.; Oton, C.J.; Cheng, C.; Yang, M.; Di Pasquale, F. Dynamic phase extraction in high-SNR DAS based on UWFBGs without phase unwrapping using scalable homodyne demodulation in direct detection. Opt. Express 2019, 27, 10644–10658. [Google Scholar] [CrossRef] [PubMed]
- Chi, M.; Plaza, A.; Benediktsson, J.A.; Sun, Z.; Shen, J.; Zhu, Y. Big Data for Remote Sensing: Challenges and Opportunities. Proc. IEEE 2016, 104, 2207–2219. [Google Scholar] [CrossRef]
- Westbrook, P. Big data on the horizon from a new generation of distributed optical fiber sensors. APL Photonics 2020, 5, 020401. [Google Scholar] [CrossRef]
- Tsvetanov, F.A. Storing data from sensors networks. In 2021 IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2021; Volume 1032, p. 012012. [Google Scholar]
- Xing, H.; Li, F.; Xiao, H.; Wang, Y.; Liu, Y. Ground target detection, classification, and sensor fusion in distributed fiber seismic sensor network. In Advanced Sensor Systems and Applications III; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2007; Volume 6831, p. 683015. [Google Scholar]
- Alam, T. Cloud-Based IoT Applications and Their Roles in Smart Cities. Smart Cities 2021, 4, 1196–1219. [Google Scholar] [CrossRef]
- Mostajabi, A.; Safaei, A.A.; Sahafi, A. A Systematic Review of Data Models for the Big Data Problem. IEEE Access 2021, 9, 128889–128904. [Google Scholar] [CrossRef]
- Elhemali, M.; Gallagher, N.; Tang, B.; Gordon, N.; Huang, H.; Chen, H.; Idziorek, J.; Wang, M.; Krog, R.; Zhu, Z.; et al. Amazon DynamoDB: A scalable, predictably performant, and fully managed NoSQL database service. In Proceedings of the 2022 USENIX Annual Technical Conference, Carlsbad, CA, USA, 11–13 July 2022. [Google Scholar]
- Amazon Web Services. Amazon DynamoDB Developer Guide; Amazon Web Services, Inc.: Seattle, WA, USA, 2023. [Google Scholar]
- Agrawal, G.P. Fiber-Optic Communication Systems, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2010; pp. 220–245. [Google Scholar]
- DeCandia, G.; Hastorun, D.; Jampani, M.; Kakulapati, G.; Lakshman, A.; Pilchin, A.; Sivasubramanian, S.; Vosshall, P.; Vogels, W. Dynamo: Amazon’s Highly Available Key-Value Store; Amazon.com: Seattle, WA, USA, 2007. [Google Scholar]
- Beltran, J.; Fernandez, A. Optical Time-Domain Reflectometry: Principles and Applications. IEEE Photonics Technol. Lett. 2018, 30, 1493–1496. [Google Scholar]
- Belalem, G.; Bouamama, S.; Sekhri, L. An Effective Economic Management of Resources in Cloud Computing. J. Comput. 2011, 6, 123–135. [Google Scholar] [CrossRef]
- Nur, A.; Di Pasquale, F.; Muanenda, Y. Design of a real-time big data analytics scheme for continuous monitoring with a distributed acoustic sensor. In Proceedings of the PIE Future Sensing Technologies 2023, Yokohama, Japan, 18–20 April 2023. [Google Scholar] [CrossRef]
- Gupta, S.; Singh, N. OTDR-Based Characterization of Optical Components in Dense Wavelength Division Multiplexing Systems. J. Light. Technol. 2019, 37, 1872–1880. [Google Scholar]
- Calheiros, R.N.; Ranjan, R.; Beloglazov, A.; De Rose, C.A.F.; Buyya, R. CloudSim: A toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Softw. Pract. Exp. 2010, 40, 125–141. [Google Scholar] [CrossRef]
- Khan, R. A Simulative Study on the Performance of Load Balancing Techniques over Varying Cloud Infrastructure Using CloudSim. Am. J. Comput. Sci. Eng. Surv. 2020, 8, 11. [Google Scholar]
- Ahmed, A.A.N.; Firas, D. Cloud Computing: Technical Challenges and CloudSim Functionalities. Int. J. Sci. Res. (IJSR) 2013, 2. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nur, A.; Muanenda, Y. Design and Evaluation of Real-Time Data Storage and Signal Processing in a Long-Range Distributed Acoustic Sensing (DAS) Using Cloud-Based Services. Sensors 2024, 24, 5948. https://doi.org/10.3390/s24185948
Nur A, Muanenda Y. Design and Evaluation of Real-Time Data Storage and Signal Processing in a Long-Range Distributed Acoustic Sensing (DAS) Using Cloud-Based Services. Sensors. 2024; 24(18):5948. https://doi.org/10.3390/s24185948
Chicago/Turabian StyleNur, Abdusomad, and Yonas Muanenda. 2024. "Design and Evaluation of Real-Time Data Storage and Signal Processing in a Long-Range Distributed Acoustic Sensing (DAS) Using Cloud-Based Services" Sensors 24, no. 18: 5948. https://doi.org/10.3390/s24185948
APA StyleNur, A., & Muanenda, Y. (2024). Design and Evaluation of Real-Time Data Storage and Signal Processing in a Long-Range Distributed Acoustic Sensing (DAS) Using Cloud-Based Services. Sensors, 24(18), 5948. https://doi.org/10.3390/s24185948