A Photoelectrochemical Biosensor Mediated by CRISPR/Cas13a for Direct and Specific Detection of MiRNA-21
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Branched-TiO2 Nanorods (B-TiO2 NRs) Electrodes
2.2. Preparation of B-TiO2 NRs/CdS Electrode
2.3. Construction of PEC Biosensing Platform and Detection of miRNA-21
2.4. Preparation of Human Serum Samples Spiked with miRNA-21
3. Results and Discussion
3.1. Characterization of Heterostructures B-TiO2 NRs/CdS
3.2. Feasibility of Cas13a-Mediated Cleavage
3.3. Feasibility Study of PEC Biosensors
3.4. Optimizing Experimental Conditions
3.5. Analytical Capabilities of PEC Biosensors for miRNA-21 Assays
3.6. The Study of Sensor’s Stability, Selectivity, and Reproducibility
3.7. Serum Sample Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saliminejad, K.; Khorram Khorshid, H.R.; Soleymani Fard, S.; Ghaffari, S.H. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J. Cell. Physiol. 2018, 234, 5451–5465. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Tan, S.; Kooger, R.; Zhang, C.; Zhang, Y. MicroRNAs as novel biological targets for detection and regulation. Chem. Soc. Rev. 2014, 43, 506–517. [Google Scholar] [CrossRef] [PubMed]
- Bhaskaran, M.; Mohan, M. MicroRNAs. Vet. Pathol. 2013, 51, 759–774. [Google Scholar] [CrossRef] [PubMed]
- Medina, P.P.; Slack, F.J. MicroRNAs and cancer: An overview. Cell Cycle 2014, 7, 2485–2492. [Google Scholar]
- Ventura, A.; Jacks, T. MicroRNAs and cancer: Short RNAs go a long way. Cell 2009, 136, 586–591. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Liu, M.; Stribinskis, V.; Klinge, C.M.; Ramos, K.S.; Colburn, N.H.; Li, Y. MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 2008, 27, 4373–4379. [Google Scholar] [CrossRef]
- Yan, L.X.; Wu, Q.N.; Zhang, Y.; Li, Y.Y.; Liao, D.Z.; Hou, J.H.; Fu, J.; Zeng, M.S.; Yun, J.P.; Wu, Q.L.; et al. Knockdown of miRNA-21 in human breast cancer cell lines inhibits proliferation, in vitro migration and in vivo tumor growth. Breast Cancer 2021, 13, 21–44. [Google Scholar]
- Calin, G.A.; Croce, C.M. MicroRNA signatures in human cancers. Nat. Rev. Cancer 2006, 6, 857–866. [Google Scholar] [CrossRef]
- Xu, Q.; Ma, F.; Huang, S.-Q.; Tang, B.; Zhang, C.-Y. Nucleic acid amplification-free bioluminescent detection of microRNAs with high sensitivity and accuracy based on controlled target degradation. Anal. Chem. 2017, 89, 7077–7083. [Google Scholar]
- Cao, J.; Yao, Y.; Fan, K.; Tan, G.; Xiang, W.; Xia, X.; Li, S.; Wang, W.; Zhang, L. Harnessing a previously unidentified capability of bacterial allosteric transcription factors for sensing diverse small molecules in vitro. Microbiology 2018, 4, 4602–4612. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, L.; Zhu, Y.; Zhang, Z.; Liu, Y.; Liu, C.; Ge, S.; Yu, J. Dual-engine powered paper photoelectrochemical platform based on 3D DNA nanomachine-mediated CRISPR/Cas12a for detection of multiple miRNAs. Anal. Chem. 2022, 94, 8075–8084. [Google Scholar] [CrossRef] [PubMed]
- Gong, S.; Zhang, S.; Wang, X.; Li, J.; Pan, W.; Li, N.; Tang, B. Strand displacement amplification assisted CRISPR-Cas12a strategy for colorimetric analysis of viral nucleic acid. Anal. Chem. 2021, 93, 15216–15223. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Chen, T.; Zhang, L.; Zhang, X.; Shi, W.; Chen, G.; Chen, W.; Lan, J.; Li, C.; Sun, W.; et al. Colorimetric detection of exosomal microRNA through switching the visible-light-induced oxidase mimic activity of acridone derivate. Biosens. Bioelectron. 2021, 173, 112834. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Zhu, L.; Yan, M.; Feng, S.; Huang, J.; Yang, X. Electrochemiluminescence Biosensor Based on Entropy-Driven Amplification and a Tetrahedral DNA Nanostructure for miRNA-133a Detection. Anal. Chem. 2021, 93, 11809–11815. [Google Scholar] [CrossRef]
- Kim, H.Y.; Song, J.; Park, H.G.; Kang, T. Electrochemical detection of zeptomolar miRNA using an RNA-triggered Cu2+ reduction method. Sens. Actuators B Chem. 2022, 360, 131666. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, H.; Zhao, Y.; Wang, Y.; Ge, L.; Huang, Y.; Li, F. Immobilization-free dual-aptamer-based photoelectrochemical platform for ultrasensitive exosome assay. Talanta 2024, 266, 125001. [Google Scholar] [CrossRef]
- Miao, P.; Sun, Y.; Zheng, G.; Wang, B.; Wang, W.; Zhang, J.; Yan, M.; Lv, Y. Near-infrared light-induced homogeneous photoelectrochemical biosensor based on 3D walking nanomotor-assisted CRISPR/Cas12a for ultrasensitive microRNA-155 detection. J. Colloid Interface Sci. 2024, 667, 82–90. [Google Scholar] [CrossRef]
- Liu, Y.; Zhong, L.; Zhang, S.; Wang, J.; Liu, Z. An ultrasensitive and wearable photoelectrochemical sensor for unbiased and accurate monitoring of sweat glucose. Sens. Actuators B Chem. 2022, 354, 131204. [Google Scholar] [CrossRef]
- Li, L.; Chen, J.; Xiao, C.; Luo, Y.; Zhong, N.; Xie, Q.; Chang, H.; Zhong, D.; Xu, Y.; Zhao, M.; et al. Recent advances in photoelectrochemical sensors for detection of ions in water. Chin. Chem. Lett. 2023, 34, 107904. [Google Scholar] [CrossRef]
- Tang, X.; Wang, H.; Zhang, X.; Mao, C.; Wu, L.; Zhao, L. A photoelectrochemical immunosensing platform for ultrasensitive detection of alpha-fetoprotein based on a signal amplification strategy. Bioelectrochemistry 2023, 150, 108351. [Google Scholar] [CrossRef]
- Hua, X.; Fan, J.; Yang, L.; Wang, J.; Wen, Y.; Su, L.; Zhang, X. Rapid detection of miRNA via development of consecutive adenines (polyA)-based electrochemical biosensors. Biosens. Bioelectron. 2022, 198, 113830. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Lu, C.; Su, D.; Wang, F.; Tan, W.; Qu, F. Construction of a polarity-switchable photoelectrochemical biosensor for ultrasensitive detection of miRNA-141. Anal. Chem. 2021, 93, 13727–13733. [Google Scholar] [CrossRef] [PubMed]
- Meng, H.; Liu, P.; Mo, F.; Chen, M.; Fu, Y. A novel ultrasensitive photoelectrochemical biosensor for detecting microRNA 21 based on cosensitization strategy and p-n heterojunction quenching mode. Sens. Actuators B Chem. 2020, 325, 128782–128790. [Google Scholar] [CrossRef]
- Yuan, Y.; Hu, T.; Zhong, X.; Zhu, M.; Chai, Y.; Yuan, R. Highly sensitive photoelectrochemical biosensor based on quantum dots sensitizing Bi2Te3 Nanosheets and DNA-amplifying strategies. ACS Appl. Mater. Interfaces 2020, 12, 22624–22629. [Google Scholar] [CrossRef]
- Li, C.-C.; Hu, J.; Zou, X.; Luo, X.; Zhang, C.-Y. Construction of a structure-switchable toehold dumbbell probe for sensitive and label-free measurement of microRNA in cancer cells and tissues. Anal. Chem. 2022, 94, 1882–1889. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, S.; Yang, C.; Hu, C.; Wang, X.; Zhen, S.; Huang, C.; Li, Y. Zinc metal organic frameworks: A coreactant-free electrochemiluminescence luminophore for ratiometric detection of miRNA-133a. Anal. Chem. 2021, 93, 14178–14186. [Google Scholar] [CrossRef]
- Yan, X.; Zhang, J.; Jiang, Q.; Jiao, D.; Cheng, Y. Integration of the ligase chain reaction with the CRISPR-Cas12a system for homogeneous, ultrasensitive, and visual detection of microRNA. Anal. Chem. 2022, 94, 4119–4125. [Google Scholar] [CrossRef]
- Miao, P.; Wang, B.; Zheng, G.; Wang, W.; Lv, Y.; Zhang, J.; Yan, M. CRISPR/Cas13a-mediated dual-modal biosensing platform based on the Zn0.5Cd0.5S/Ti3C2 Schottky heterojunction for the sensitive detection of miRNAs-21. Sens. Actuators B Chem. 2024, 400, 134829–134830. [Google Scholar] [CrossRef]
- Shmakov, S.; Smargon, A.; Scott, D.; Cox, D.; Pyzocha, N.; Yan, W.; Abudayyeh, O.O.; Gootenberg, J.S.; Makarova, K.S.; Wolf, Y.I.; et al. Diversity and evolution of class 2 CRISPR-Cas systems. Nat. Rev. Microbiol. 2017, 15, 169–182. [Google Scholar] [CrossRef]
- Ramachandran, A.; Santiago, J.G. CRISPR enzyme kinetics for molecular diagnostics. Anal. Chem. 2021, 93, 7456–7464. [Google Scholar] [CrossRef]
- Liu, L.; Li, X.; Ma, J.; Li, Z.; You, L.; Wang, J.; Wang, M.; Zhang, X.; Wang, Y. The molecular architecture for RNA-guided RNA cleavage by Cas13a. Cell 2017, 170, 714–726. [Google Scholar] [CrossRef] [PubMed]
- Huyke, D.A.; Ramachandran, A.; Bashkirov, V.I.; Kotseroglou, E.K.; Kotseroglou, T.; Santiago, J.G. Enzyme kinetics and detector sensitivity determine limits of detection of amplification-free CRISPR-Cas12 and CRISPR-Cas13 diagnostics. Anal. Chem. 2022, 94, 9826–9834. [Google Scholar] [CrossRef] [PubMed]
- Nalefski, E.A.; Patel, N.; Leung, P.J.Y.; Islam, Z.; Kooistra, R.M.; Parikh, I.; Marion, E.; Knott, G.J.; Doudna, J.A.; Le Ny, A.-L.; et al. Kinetic analysis of Cas12a and Cas13a RNA-Guided nucleases for development of improved CRISPR-Based diagnostics. Science 2021, 24, 102996. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.S.; Ma, E.; Harrington, L.B.; Da Costa, M.; Tian, X.; Palefsky, J.M.; Doudna, J.A. CRISPR-Cas12a target binding unleashes indiscriminat single-stranded DNase activity. Biotechnology 2021, 360, 430–439. [Google Scholar]
- East-Seletsky, A.; O’Connell, M.R.; Knight, S.C.; Burstein, D.; Cate, J.H.D.; Tjian, R.; Doudna, J.A. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature 2016, 538, 270–273. [Google Scholar] [CrossRef]
- Abudayyeh, O.O.; Gootenberg, J.S.; Konermann, S.; Joung, J.; Slaymaker, I.M.; Cox, D.B.T.; Shmakov, S.; Makarova, K.S.; Semenova, E.; Minakhin, L.; et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 2016, 353, 5573. [Google Scholar] [CrossRef]
- Jiang, L.; Du, J.; Xu, H.; Zhuo, X.; Ai, J.; Zeng, J.; Yang, R.; Xiong, E. Ultrasensitive CRISPR/Cas13a-Mediated Photoelectrochemical Biosensors for Specific and Direct Assay of miRNA-21. Anal. Chem. 2023, 95, 1193–1200. [Google Scholar] [CrossRef]
- Yang, Y.; Yan, W.; Wang, X.; Yu, L.; Zhang, J.; Bai, B.; Guo, C.; Fan, S. Development of a molecularly imprinted photoelectrochemical sensing platform based on NH2-MIL-125(Ti)–TiO2 composite for the sensitive and selective determination of oxtetracycline. Biosens. Bioelectron. 2021, 177, 113000–113008. [Google Scholar] [CrossRef]
- Feng, D.; Huang, P.; Miao, Y.; Liang, A.; Wang, X.; Tang, B.; Hou, H.; Ren, M.; Gao, S.; Geng, L.; et al. Novel photoelectrochemical sensor for cholesterol based on CH3NH3PbBr3 perovskite/TiO2 inverse opal heterojunction coated with molecularly imprinted polymers. Sens. Actuators B Chem. 2022, 368, 132121. [Google Scholar] [CrossRef]
- Huo, G.-N.; Zhang, S.-S.; Li, Y.-L.; Li, J.-X.; Yue, Z.; Huang, W.-P.; Zhang, S.-M.; Zhu, B.-L. CdS-modified TiO2 nanotubes with heterojunction structure: A photoelectrochemical sensor for glutathione. Nanomaterials 2022, 13, 13. [Google Scholar] [CrossRef]
- López, R.; Gómez, R. Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: A comparative study. J. Sol-Gel Sci. Technol. 2011, 61, 1–7. [Google Scholar] [CrossRef]
- Bo, Y.; Li, L.; Miao, P.; Li, C.; Chang, J.; Zhang, Y.; Lv, Y.; Yang, X.; Zhang, J.; Yan, M. 2D Z-scheme ZnIn2S4/g-C3N4 heterojunction based on photoelectrochemical immunosensor with enhanced carrier separation for sensitive detection of CEA. Biosens. Bioelectron. 2024, 247, 115926–115933. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, Y.; Chai, Y.; Yuan, R.; Liu, H. An Ultrasensitive Photoelectrochemical Biosensor based on AgBiS2/CdS Photoanode and Multiple Signal Amplification Strategy for the Detection of Dibutyl Phthalate Plasticizer. Sens. Actuators B Chem. 2024, 4005, 135945. [Google Scholar] [CrossRef]
- Zhu, D.; Liu, W.; Zhao, D.; Hao, Q.; Li, J.; Huang, J.; Shi, J.; Chao, J.; Su, S.; Wang, L. Label-free electrochemical sensing platform for microRNA-21 detection using thionine and gold nanoparticles co-functionalized MoS2 nanosheet. ACS Appl. Mater. Interfaces 2017, 9, 35597–35603. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Gan, N.; Zhang, H.; Li, T.; Cao, Y.; Hu, F.; Jiang, Q. Ratiometric biosensor array for multiplexed detection of microRNAs based on electrochemiluminescence coupled with cyclic voltammetry. Biosens. Bioelectron. 2016, 75, 308–314. [Google Scholar] [CrossRef]
- Cheng, W.; Zhang, Y.; Yu, H.; Diao, W.; Mo, F.; Wen, B.; Cheng, W.; Yan, Y. An enzyme-free colorimetric biosensing strategy for ultrasensitive and specific detection of microRNA based on mismatched stacking circuits. Sens. Actuators B Chem. 2018, 255, 3298–3304. [Google Scholar] [CrossRef]
- Wang, Z.; Xue, Z.; Hao, X.; Miao, C.; Zhang, J.; Zheng, Y.; Zheng, Z.; Lin, X.; Weng, S. Ratiometric fluorescence sensor based on carbon dots as internal reference signal and T7 exonuclease-assisted signal amplification strategy for microRNA-21 detection. Anal. Chim. Acta 2020, 1103, 212–219. [Google Scholar] [CrossRef]
- Chu, Y.; Wu, R.; Fan, G.-C.; Deng, A.-P.; Zhu, J.-J. Enzyme-Free photoelectrochemical biosensor based on the Co-Sensitization effect coupled with dual cascade toehold-mediated strand displacement amplification for the sensitive detection of microRNA-21. ACS Sustain. Chem. Eng. 2018, 6, 11633–11641. [Google Scholar] [CrossRef]
Analytical Methods | Linear Range | Detection Limit | References |
---|---|---|---|
Electrochemistry Electrochemiluminescence Colorimetry Fluorescence Photo electrochemistry Photo electrochemistry Photo electrochemistry | 1 pM~10 nM 0.02 pM~120 pM 100 fM~10 nM 0.05 nM~10 nM 1 fM to 5 nM 1 pM to 100 nM 10 fM~10 nM | 0.26 pM 6.3 fM 36.2 fM 1 pM 1 fM 0.31 pM 9 fM | [44] [45] [46] [47] [37] [48] This work |
Sample (Number) | Quantity Added | Found | Recovery Rate (%) |
---|---|---|---|
1 | 10 fM | 9.77 ± 0.29 fM | 97.7 |
2 | 0.1 pM | 0.106 ± 0.02 fM | 106.0 |
3 | 100 pM | 101.2 ± 1.11 fM | 101.3 |
4 | 1 nM | 0.988 ± 0.03 fM | 98.9 |
5 | 10 nM | 9.63 ± 0.02 fM | 96.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Miao, P.; Wang, J.; Sun, Y.; Zhang, J.; Wang, B.; Yan, M. A Photoelectrochemical Biosensor Mediated by CRISPR/Cas13a for Direct and Specific Detection of MiRNA-21. Sensors 2024, 24, 6138. https://doi.org/10.3390/s24186138
Zhang Y, Miao P, Wang J, Sun Y, Zhang J, Wang B, Yan M. A Photoelectrochemical Biosensor Mediated by CRISPR/Cas13a for Direct and Specific Detection of MiRNA-21. Sensors. 2024; 24(18):6138. https://doi.org/10.3390/s24186138
Chicago/Turabian StyleZhang, Yang, Pei Miao, Jingyuan Wang, Yan Sun, Jing Zhang, Bin Wang, and Mei Yan. 2024. "A Photoelectrochemical Biosensor Mediated by CRISPR/Cas13a for Direct and Specific Detection of MiRNA-21" Sensors 24, no. 18: 6138. https://doi.org/10.3390/s24186138
APA StyleZhang, Y., Miao, P., Wang, J., Sun, Y., Zhang, J., Wang, B., & Yan, M. (2024). A Photoelectrochemical Biosensor Mediated by CRISPR/Cas13a for Direct and Specific Detection of MiRNA-21. Sensors, 24(18), 6138. https://doi.org/10.3390/s24186138